Overview of B Physics Results from the ATLAS Experiment

Tenth Conference in the Symposium on Cosmology and Particle Astrophysics Series Auckland, New Zealand 11 December 2014

> Sally Seidel University of New Mexico on behalf of the ATLAS Collaboration

The ATLAS Experiment at the CERN Large Hadron Collider

CMS

SPS

LAS

LHC - B

ALICE Point 2

ALICI

LEP/LHC

All of the topics presented here have been announced within the past 14 months.

They are based on data collected in 2011 at 7 TeV center-of-mass energy, and in 2012 at 8 TeV.

These 9 results are a sample of over 100 papers submitted by ATLAS for publication during this period.

Please note the other ATLAS talks by:

Mark Kruse: ATLAS as a tool for understanding the universe Arnaud Lucotte: Top quark measurements Jean-Francois Laporte: Standard Model studies Stefania Xella: Higgs measurements Michele Bianco: SUSY searches James Frost: Dark matter searches Placing a microscope on QCD at the perturbative/non-perturbative boundary:

The Parity-Violating Asymmetry Parameter and Helicity Amplitudes for $\Lambda_b^{\ 0} \rightarrow J/\psi \Lambda^0$

 J/ψ - W^{\pm} associated production

 J/ψ - Z^0 associated production

Prompt and non-prompt $\psi(2S)$ production

 χ_{c1} and χ_{c2} production

B⁺ production

Discovery of a new particle and its impact on Strong Interaction models:

Observation of an Excited ${\rm B_c}^{\pm}$ Meson

Search for Hidden Beauty as a way to make sense of Hidden Charm:

Search for the X_b

Search for New Physics:

A measurement of the $B_s^0 \rightarrow J/\psi \phi$ decay parameters

16.2 fb⁻¹@ 8 TeV

Search for the X_b and other hidden-beauty states in the $\pi^+\pi^-Y(1S)$ channel

X(3872): a narrow resonance, discovered in $B^{\pm} \to K^{\pm}X(\to \pi^{+}\pi^{-}J/\psi)$, existence well-confirmed by several experiments in $e^{+}e^{-}$ and $p\overline{p}$, decays strongly to D^{0} and J/ψ final states. Interpreted as "hidden charm" (equal amounts *c* and \overline{c}), candidate for tetraquark or $D^{0}\overline{D}^{*0}$ "molecule."

Heavy quark symmetry suggests: an analogous "hidden-beauty" X_b should exist in mass range 10.492 - 10.682 GeV.

Search in channel $X_b \to \pi^+ \pi^- \Upsilon(1S) (\to \mu^+ \mu^-)$. Validate search by reconstructing $\Upsilon(2S)$ and $\Upsilon(3S) \to \pi^+ \pi^- \Upsilon(1S) (\to \mu^+ \mu^-)$.

arXiv:1410.4409 [hep-ex], to be submitted to PLB

Results of the search :

- $\Upsilon(2S)$ and $\Upsilon(3S)$ observed, yields consistent with expectation.
- Hypothesis test applied for X_b peak for every 10 MeV from 10 GeV to 11 GeV, assuming narrow peak, with three-body phase space decay characteristic and $(|y|, p_T)$ differential cross-section similar to $\Upsilon(2S), \Upsilon(3S)$.
- Search uses 8 bins in y, p_T , and angle between dipion and parent. Apply simultaneous fit to the search region and the nearby $\pi^+\pi^-\Upsilon(1S)$ spectrum.
- No evidence for X_h : upper limits 95% CL_S Upper Limit on R 01 computed assuming production Observed ATLAS Median Expected unpolarized, with offsets representing $\sqrt{s} = 8 \text{ TeV}, 16.2 \text{ fb}^{-1}$ ±1σ Band $\pm 2\sigma$ Band limiting case effects of J/ψ TRPP polarization states on acceptance. • Limits range from 0.8% to 4.0% TRP0 TRPM in ranges [10.05-10.31] and 10⁻² [10.40-11.00] GeV. Above 10.1 GeV LONG these are the most restrictive to date. 10600 10000 10200 10400 10800 11000 11200

Parent Mass [MeV]

Observation of an excited B_c[±] meson state

4.9 fb⁻¹ @ 7 TeV, 19.2 fb⁻¹ @ 8 TeV

Phys. Rev. Lett. 113 (2014) 212004

The B_c is a bound state of (b,c) quarks. No states above ground $[B_c(1S), 6.2756 \text{ GeV}]$ have been previously observed. B_c is strongly produced and decays weakly. Its spectrum can be applied to test predictions of non-relativistic potential models, pQCD, and lattice calculations, and to extract the form of the strong potential.

Do not resolve pseudoscalar-vector splitting at the 1S or 2S level. Take advantage of: a 2-vertex event structure, clean J/ψ dimuon signature. Cancel some systematics by searching in the mass difference spectrum:

$$Q \equiv m \left(B_c^{\pm} \pi \pi \right) - m \left(B_c^{\pm} \right) - 2m \left(\pi^{\pm} \right).$$

Result of the search :

- Signal observed independently in 2011 and 2012 data at $Q = 288.3 \pm 3.5 \pm 4.1$ MeV.
- Widths are gaussian, consistent with ATLAS resolution.
- Combined significance: 5.2σ .
- This corresponds to a new state of mass $6842 \pm 4 \pm 5$ MeV.

analysis of the $B_s^0 \rightarrow J/\psi \phi$ decay and extraction of $\Delta \Gamma_s$ and the weak phase ϕ_s PRD 90 (2014) 052007. New physics may alter CP violation in $B_s^0 \rightarrow J / \psi \phi$ decays. CP violation occurs due to interference between direct decays and decays $B_s^0 \begin{bmatrix} \overline{b} & V_{tb} & W & V_{ts} & \overline{s} \\ & u,c,t & u,c,t & u,c,t \\ & s & V_{ts} & W & V_{tb} & b \end{bmatrix} \overline{B}_s^0$ involving $B_s^0 - \overline{B}_s^0$ mixing. $B_s^0 - \overline{B}_s^0$ oscillation is characterized by a mass difference between mass eigenstates, B_H and B_L . This analysis measures two CP parameters: (1) ϕ_s , the weak phase difference between the $B_s^0 - \overline{B}_s^0$ mixing amplitude and the $b \rightarrow c\overline{c}s$ decay amplitude. In the Standard Model, $\phi_s \simeq -2 \arg \left| -\frac{V_{ts}V_{tb}^*}{V V_{t}^*} \right| = -0.037 \pm 0.002 \text{ rad.}$ (2) width difference between the light and heavy eigenstates, $\Delta \Gamma_s \equiv \Gamma_L - \Gamma_H$. In the Standard Model, $\Delta \Gamma_s = 0.087 \pm 0.021 \text{ ps}^{-1}$.

Flavor tagged time dependent angular

4.9 fb⁻¹ @ 7 TeV

10

(Pseudoscalar) $B_s^0 \rightarrow$ (vector) J/ψ +(vector) ϕ produces 3 orbital angular momentum states: L = 0,2 (CP-even) and L = 1 (CP-odd) To improve precision on ϕ_s , flavor-tagging is used to determine if initial state is B_s^0 or \overline{B}_s^0 . Time dependent angular analysis of the final states statistically separates them by CP.

A 25-parameter unbinned max likelihood fit is used to extract the parameters of the $B_s^0 \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ decay.

Result : Parameters (now improved in precision) are consistent with the Standard Model and with a previous ATLAS measurement.

Here: Likelihood contours for the measurement; SM prediction; results from other experiments; combined result.

Measurement of the parity-violating asymmetry parameter α_b and the helicity amplitudes for the decay $\Lambda_b^{\ 0} \rightarrow J/\psi \Lambda^0$

4.6 fb⁻¹ @ 7 TeV

Parity violation in weak interactions of hadrons depends on the constituents because of the presence of strongly bound spectator quarks. For the decay of a particle with polarization P to two spin-1/2 daughters, the decay asymmetry α enters angular distributions through

$$w(\cos\theta) = \frac{1}{2} (1 + \alpha P \cos\theta).$$

(θ : angle between the polarization vector and the direction of the decay product in the particle's rest frame).

The α is hard to predict for light hadrons, but for heavy baryon Λ_b^0 , factorization and pQCD may be justified in calculations of the spectators, making prediction of α_b possible. The decay channel studied is $\Lambda_b^0 \to J/\psi(\mu^+\mu^-)\Lambda^0(p\pi^-)$.

Phys. Rev. D 89 (2014) 092009

There are 4 possible combinations of the helicity of the Λ (" λ_{Λ} ") and the helicity of the J/ ψ (" $\lambda_{J/\psi}$ "):

Amplitude	λ_{Λ}	$\lambda_{J/\psi}$
a ₊	0	1/2
a_	0	-1/2
b ₊	-1	-1/2
b_	1	1/2
$\overline{a_{b} = a_{+} ^{2} - a_{-} ^{2} + b_{+} ^{2} - b_{-} ^{2}}$		

These a_i, b_i are extracted from the moments of the angular distribution.

Result :

- $\alpha_b = 0.30 \pm 0.16 \pm 0.06$.
- Differs from HQET (prefers 0.78) by 2.8σ
- Differs from pQCD (prefers -0.17 to -0.14) by 2.6σ
- Consistent with LHCb $(\alpha_b^{LHCb} = 0.05 \pm 0.17 \pm 0.07)$ within 1σ

 χ^2_{min} value

13

Measurement of the production cross section of prompt J/ ψ mesons in association with a W^{\pm} boson

JHEP 04 (2014) 172

Associated W production with prompt (from the same primary vertex) J/ψ tests QCD at the boundary of perturbative processes (heavy quark production) and non-perturbative (formation of the quarkonium).

Perturbative calculations distinguish between production of the J/ψ in the color singlet (CS) or color octet (CO) state.

This measurement also quantifies background to Higgs decays to quarkonia + vector boson, which probe the Higgs-charm coupling and/or can signal charged Higgs.

The analysis includes

- Single Parton Scatters ("SPS"). Here W and J/ψ are produced together.
- Double Parton Scatters ("DPS"). This W and J/ψ come from different primary vertices.
- W+ heavy charmonium produced, then heavy charmonium $\rightarrow J/\psi$.

Results of the measurement :

- Associated W + prompt J/ψ observed, at significance 5.1σ .
- Both SPS and DPS contribute.
- Data exceed both CS and CO predictions but are consistent with CS within uncertainty.
- LO CS prediction is nearly 10x higher than NLO CO.
- \rightarrow Process seems to be dominated by CS
- \rightarrow SPS is the primary contributor to the total rate at low $J/\psi p_{T}$.

20.3 fb⁻¹ @ 8 TeV

Measurement of the production cross section of prompt and non-prompt J/ ψ mesons in association with a Z⁰ boson

Again measurement of J/ψ properties tests models for quarkonium production. Requiring the formation of the Z sets a high energy scale for the scattering process that improves the perturbative calculation convergence. While the hadro-production spectrum as a function of p_T is well modeled by NRQCD, other observables (e.g., charmonium spin alignment) are not well modeled simultaneously with it.

Z + non-prompt J/ ψ probes b-hadron production models.

- Z + prompt J/ψ contributes to understanding of
- prompt $ZZ^*(\rightarrow c\overline{c})$ production in a new kinematic regime of pp collisions
- background to the search for rare $Z \rightarrow \ell^+ \ell^- J / \psi$ decay
- background to rare decays of Higgs in QQ+V modes (probe Higgs-charm coupling)
- background to $H \rightarrow ZZ^*$
- search mode for new physics

Note: CO prediction = $2 \times$ CS prediction

DPS contribution estimated from results of dedicated ATLAS study of DPS in

 $pp \rightarrow W + \ell v_{\ell} + 2$ jets.

Results of this measurement, in 5 intervals of J / ψ p_T :

- *First observation*: of *Z* + prompt J/ψ (signif. 5 σ) and *Z* + non-prompt (signif. 9 σ).
- Observed production rate exceeds prediction (sum of CO + CS) by a factor of 10.

Measurement of χ_{c1} and χ_{c2} production

Now a look at a different heavy quarkonium- - again probes QCD uniquely because its formation involves 2 scales:

- the mass scale of the heavy quark pair produced perturbative
- the scale at hadronization non-perturbative

The intermediate mass of the c-quark further challenges theory because simple non-relativistic treatment of the bound state is not obviously applicable. Production can be modeled as color singlet (CS) or color octet (CO).

Triplet of quarkonium P-wave states just below the open-charm threshold: $\chi_{cJ}(1P)$. This analysis studies $\chi_{cJ} \rightarrow J / \psi \gamma$ for J = 1,2. (J = 0 has branching fraction 1.3%, neglected). Compare 2 modes of production: *prompt* (pp $\rightarrow \chi_{cJ}$ directly OR pp \rightarrow heavier quarkonium $\rightarrow \chi_{cJ}$) and *non* - *prompt* (pp \rightarrow b-hadron $\rightarrow \chi_{cJ}$).

Why study these particular quarkonia, the χ_{cJ} ?

(1) χ_{cJ} feed down to J/ ψ , so precision measurements of J/ ψ depend on understanding *prompt* χ_{cJ} .

(2) b-hadron decays to *non* - *prompt* charmonium provide an observable for studying b-quark production.

The signals :

Theoretical models compared to the data:

(1) NLO NRQCD - separates perturbative production of heavy quark
(CS or CO) from non-perturbative evolution into quarkonium
(2) k_T factorization - partonic cross-section from CSM convolved with gluon distribution that depends on both longitudinal and transverse momentum.
(3) LO CSM - heavy quarks produced in color singlet state, potential model used to describe bound state.

The conclusions :

- Good agreement between NRQCD and data.
- k_T factorization prediction high;

LO CSM prediction low.

 \Rightarrow Conclude, higher order corrections

or CO contributions may be

numerically significant

Measurement of the production crosssection of $\psi(2S) \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$

Again here, a complete theoretical description of quarkonium is difficult due to the multiple energy scales and intermediate mass of the c-quark. This measurement attempts to separate these effects.

Prompt and non-prompt production of $\psi(2S)$ are compared with

- data from LHCb and CMS
- theoretical models for prompt production
- theoretical models for non-prompt production

Theoretical models for prompt production :

- color singlet pQCD at partial NNLO ("NNLO*"), using CTEQ6M
- LO and NLO NRQCD (color-octet approach)
- color evaporation model (CEM)
- $k_{\rm T}$ -factorization

Prompt results :

- CS NNLO* underestimates the data by $\times 5$, beyond attributable to scale; deviation from data increases with $p_{\rm T}$.
- NLO agrees well with data over full $p_{\rm T}$ range.
- CEM similar to NLO but harder at high $p_{T.}$
- $k_{\rm T}$ -factorization underestimates data with $p_{\rm T}$ -dependent shape.

Theoretical models for non - prompt production :

- FONLL (fixed order + next to leading log)
- NLO in the general-mass variable-flavor-number scheme

Non - prompt results :

- FONLL and NLO GM-VFNS match data well but predict slightly harder $p_{\rm T}$ spectrum.
- similar to trend seen in CMS data; extends comparison to higher $p_{\rm T}$.
- Given that FONLL models charged B mesons well at similar $p_{\rm T}$, discrepancy may indicate mismodelling of b-hadron composition or decay kinematics rather than b-quark fragmentation.

Differential cross-section of B⁺ meson production

2.4 fb⁻¹ @ 7 TeV

JHEP 10 (2013) 042

Production cross section measurements are foundational to understanding of heavy quark production in hadronic collisions. Theoretical predictions for b-quark production can have uncertainty up to 40% due to assumptions about factorization and renormalization scales, and b-quark mass.

This measurement:

- extends the cross section to $p_{\rm T} \sim 100 \text{ GeV}$
- 4 differential measurement ranges in rapidity |y| < 2.25

Compare data to:

- POWHEG + PYTHIA using CT10 parameterization for proton pdf
- MC@NLO + HERWIG using CT10 parameterization
- FONLL using CTEQ6.6 parameterization

NLO QCD is compatible with data:

- POWHEG agrees within errors at all $p_{\rm T}$ and y
- MC@NLO predicts p_T spectrum softer than data for low |y| and harder for |y| > 1.

- FONLL for $\sigma(pp \rightarrow bX)$, with PDG world avg. hadronization fraction $f_{b\rightarrow B^+} = (40.1 \pm 0.8)\%$, agrees with measured $d\sigma / dp_{\rm T}$.
- Precision 7% 30%

Conclusions

Results from 9 ATLAS analyses of heavy flavor processes have been shown:

- Search for hidden beauty states analogous to the still unexplained hidden charm state X(3872).
- Discovery of the first excited B_c meson.
- Search for new physics in $B_s^0 \rightarrow J/\psi\phi$ angular characteristics.
- Test of pQCD and HQET-based models through the $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ parameters.
- Production cross sections of the B⁺, $\psi(2S)$, χ_{c1} and χ_{c2} , and J/ ψ in association with a W[±] and with a Z⁰, all tests of QCD at the perturbative/non-perturbative interface.

The LHC continues to bring light to long-dark corners, ever more stringent tests, discoveries. In Spring 2015 the collider will restart data-taking at 13 TeV, a new window on the unknown.