Introduction to Particle Physics Homework 4

- 1. (a) Show that $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = I$ (where the σ_i are the Pauli matrices and I is the 2x2 identity matrix.
- (b) Show that $\sigma_i \sigma_j = \delta_{ij} + i\epsilon_{ijk} \sigma_k$ (where δ_{ij} is the Kronecker delta and ϵ_{ijk} is the Levi-Civita symbol).
- (c) Use the above information to show that $[\sigma_i, \sigma_i] = 2i\epsilon_{ijk}\sigma_k$.
- (d) Also show the anticommutation relation, $\{\sigma_i, \sigma_i\}=2\delta_{ii}$.
- (e) Show that for any two vectors \vec{a} and \vec{b} , $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b}) = \vec{a} \cdot \vec{b} + i\vec{\sigma} \cdot (\vec{a} \times \vec{b})$.
- (f) Apply the result in (e) to the special case where $\vec{a} = \vec{b} = \vec{p}$, momentum.
- 2. Define the helicity operator $H = \frac{\vec{\sigma} \cdot \vec{p}}{|\vec{p}|}$. Apply this operator to u_A , u_B , v_A , and v_B . and explicitly show the helicity eigenvalues that result. You may use information derived in Problem (1) above.
- 3. The Dirac Equation was derived in class for the case of a free particle. Consider the case in which an electromagnetic potential A_{μ} is present. Modify the Dirac Equation by replacing $-i\hbar\partial_{\mu}$ with $-i\hbar\partial_{\mu}-eA_{\mu}/c$, then show that the Continuity Equation still holds.
- 4. Griffiths 7.48a.