APPENDIX

E

THE LAGRANGIAN
FOR A

CHARGE ¢

IN A MAGNETIC
FIELD

How do we handle magnetic fields within the framework of a Lagrangian? Purely
electric forces are easy. After all, the electric potential ¢(r) is introduced in
electrostatics as the work done per unit charge to bring the charge to the position
r from some reference point, which is often taken as at infinity. Then the potential
energy of a charge g is V = g¢ and the Lagrangian is given by

=T-V=1mv’-gqe (E.1)

In terms of the Cartesian coordinates x; = x, x» =y, and x3 = z, the Euler-
Lagrange equation of motion

Ao _dfi_ -
ax; dt \ox; ‘ (E.2)
for the Lagrangian (E.1) is given by
dp d .
Uops " @™ = 0 (E.3)

ms; = —q-— (E.4)
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* Since the electric field E is given in electrostatics by E = — V¢, the equation of

motion can be expressed in terms of vectors as the force law ma = F = gE.
The full Lorentz force

F = gE +q(v/c) X B (E.5)

includes velocity-dependent magnetic forces, which cannot be obtained from a
Lagrangian of the form (E.1) that is just the difference of the kinetic and potential
energies. Since the magnetic force always acts at right angles to the velocity, it
doesn’t change the magnitude of the velocity and thus does no work. However,
we can show that the Lagrangian

L= %mvz ~qe + %A ‘v (E.6)

which differs from (E.1) by the addition of a velocity-dependent term involving
the vector potential A, yields the Lorentz force (E.5) for the equations of motion.
The magnetic field B can always be expressed in the form B = VX A, since the
magnetic field satisfies V- B = 0 and the gradient of a curl vanishes:

VB=V(VXA)=0 (E.7)
Since for the Lagrangian (E.6)
?_L =mi; + ZA,. (E.8)
¢9x,- 4

the canonical momentum p; = dL/dX; is given in vector form by

p=mv+ %A (E.9)
In order to evaluate
d (JdL q dA;
= = g + L E.10
dt (ax,) T (E.19

notice that A; = A;[x (1), y(t), z(¢), t] and therefore

dA; _ oA 2 9A; dxj _ dA;

- == ;—;E—Jr_ at+v-VA,- (E.11)
Using
(E.2) becomes

“qz?%*"% j_j‘i- ,—q—(—‘;—Ati+v-VA,->=0 (E.13)
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or
) A v JA g ’aA
P mm e ) —— + -— s e .
mx; q(“' 9= i ( - VA4; ) (E.14)

In vector notation, (E.14) can be expressed in terms of the force F on the particle
as

IA
F = q< Vo — —;—’>+%|V(v-A)—(v-V)A] (E.15)
or
_ 9 = q
_qE+-(—:—v)((VXA)—qE+-gVXB (E.16)
as desired.

Given the Lagrangian (E.6), we can determine the Hamiltonian in the usual
way:

= > —miik; + qo (E.17)

At first it appears that the vector potential has disappeared entirely from the
Hamiltonian. However, if we express the Hamiltonian in terms of the canonical
momentum (E.9), we obtain

_ 2
(p — qAJc) 4
2m

H = (E.18)
This suggests a mnemonic for the way to turn on eléctromagnetic interactions in
terms of the Hamiltonian: take the energy for a free particle of charge g
2
p :

= om (E.19)
and make the replacements p — p — gA/c and E — E — g¢ to generate (E.18),
with the energy E replaced by the symbol for the Hamiltonian.

1A=10""m

1 fm=10"Pm

1 barn = 10~ 28

1 dyne = 107° newton (N
1 gauss(G) = 107 tesla (]
1 erg = 1077 joule (J)

Quantity Symbo
Speed of light ¢
Planck’s constant h
h=h
Electron charge e

Electron mass me




