I. Time-dependent Perturbation Theory
II. Fermi's Golden Rule

Read Chapter 23 Sections 1, 2, 3



I. Time-dependent perturbation theory
Consider again the effect of H=H + H,

has known eigenfunctions \arbitrary

‘(pn> and eigenvalues E

—

IfH, # f(¢) we can study H with the time-independent Schrodinger equation, then tjust ultiply by e_;&} later.

this is what we just

—

!
did for H, small short-cut to solving the this L‘ must include perturbative

time-dependent Sch. Eq. corrections E”, E®, etc.

—

this is what we {But if H = H () , this causes H to be H(t), so we must solve the time-dependent Schrodinger equation from

will do now the beginning.

Assume:

(1) the eigenfunctions ‘gon> and eigenvalues E of H are known:

H (pn>: E” g0n> and
0

0
o)=c " 19,)  ((9.]9,) =)
(11) the eigenfunctions ‘(pn> of H are not yet known, but they solve H ‘ ‘Pn> =ih

9
ot

¥,)
(1i1) The ‘(pn> can form a basis in which “Pn> can be expanded:
[¥,0)=2e,0]0,) e,(0=(0,|¥,)

Goal: find ¢ (7)

To solve ¢ (1), plug “Pn(t)> directly into the time-dependent Schrodinger equation



HY.c, (0)]o,) =i {Zc e, >}
(Ho +H)Y e, 0o,) =X {c,0)2]0,)+2(c,0)]0,)}
:ihZ{cn(z)("‘if” )m) + (%cn(t))\rp)}

Rewrite:

Y e, )(H,— E”)|¢,)+ X (c,(0H, —inde, 1) @,)=0

= ( because H0‘§0n> =E" ‘(P,1>
multiply by <§Dk‘

>, 0{o,|H ]9, )-inze,0){p,0,)]=0
Plug in:

—iE\0y
— n A
0,)=¢""|9,)
i A
J— h
‘(pk> =€ ‘¢k>

i)
(0 \— ”
k

v

t
(9.
PONTON ()()

e (z)<<pk\H \qo T =iy 2e, (@ ]@,)e T

&L E( ) g )
call this' H " call "a)kn "



I. Time-dependent Perturbation Theory (continued)
II. Fermi's Golden Rule
III. The Variational Method

Read Chapter 23 Section 1, except Traut from com to lab



i, t .
E c H & —ihlc =0
n ol otk
n

This is an exact equation that relates each coefficients (the ¢, '#h) to all the other coefficients (the ch )

It is impossible to solve analytically for arbitrary H,

IfH, is "small", assume:

(1) The ¢ (z) are almost constants, not really functions of t
(2) @ t=0, the state of the system is known, so

one coefficient (call is c.(r=0)=1

all the rest =0

(3) Then since the ¢ are constants, c, remains = |

even at later t, and the other Coi remain =0

So in this approximation the equation becomes

iw,.t .
H1 eV —ihide =0
. otk

Solve it:

o (0

c=5j%.|.dt'e " <(/3k|H1

4,)

So if the system began with ¢, =1, ¢ . =0 @ t=0, the probability that the system is in state

2

k@ =t is |c, (")




Example solution of ¢,

ile(z)={ 0 =0 }

consant 1ft=>0

then

. t
1 io,.t’
c =6 ——H Jdt’e ¥
k W Iy
0

] 1 iw,.t’
PSSV B
Th W ia)kj

t

0

_ _ i lk/. (eiw,]t _ 1)
booh 0,
Hlkj l(l)kt
c, =8, +—"(1-¢™
/ ha)k/

Note k indexes the coefficient being examined (¢, = <(pk |‘P>) while j indexed the one coefficient (c,) which has

non-zero @ t=0

II. Fermi's Golden Rule
H (t0)

Recall ¢, when k # j [where initially ¢, was the only non-zero amplitude] for H () = 0 (t<0)
t<



Probability (observing state k @ time t) = |ck|2
2
j{lk. —iw, .t +iw, .t
P (1)
hw

ki

2
}[lk, ( +i, t —iw, t )
= — - " —e " +1

hoy

H 2 +iot —iw,t
_ Ly -9 e +e
ho

ki
2
H,

=|— 2{1—(coswt)}

hwkj
g_[ 2

— | 4{% — %(cosa)t)}

hwki

use cos2x=cos’x —sin’ x = (1—sin” x) —sin’ x = 1 — 2sin’ x

SO 1C0S2X =1 — sin’ x

- 2
SO %—%cos2x=sm X

. .. 25_[1@' . 2 ()ijlL
Probability of transition from <(pj — <(pk| = m sin 5

Now we want to know

Probability (system that begins in state <(pj ‘ makes a transistion to any other states, given infinite time)



Probability (system that begins in state <(pj‘ makes a transistion to any other states, given infinite time)
=Y Probability (j— k)
k

2

_ 25_[119' . 2 wkjt
= 4 —Elio)_Eﬁo) Sin )

If states <(pk ‘ are continuously distributed (i.e. scattering states)

rather than discretely distributed (i.e. bound states), then 2 — Jdn

2
=|d 25—[147' ) wkjt
= J. I’lk —E]EO) ~ EJ(_O) Sin 7

If there is a degeneracy @ E=E), so there is a density of states there,

dn

p(Ei) = then dn=p - dE

oo _
o) o] L)

k J

Letx =
2h
4 2.2 t
EO - g0 =221 and  dx=dE®.—
/ 2 2h




t2
4h*x*

sin® x

Prob,, = [ 2 dup(x)4[24,]

consider the case where p(x) = p, average density over all final states, a constant and

‘5—[ 1‘2 = Flf, average value of <q0k ‘H ‘g0j> over all <q0k , also a constant

Then
sin® x

2
X

2t —,_ ¢
Prob, :%prjdx

o . 21t —,_
Probability(system transitions out of (¢ .| dueto H) = l]—] ’
?, | . 1 P

dProb B 27
dt h

Soltransition rate = H 12/3 this 1s Fermi's Golden Rule

const 1ft>0

we worked this out for H1 =
0 ift<0

but it is true for any H,



I. The Variational Method
II. Intro to Scattering Theory
I11. Probability current of scattered particles



I. The Variational Method
This is what you use if you want to find the ground state energyof a system but have a Hamiltonian H (;t f (t))

which cannot be written as H ot AH |

1.€., this 1s what to use if H either

(1) does not have any term that looks like a familiar solved H , or

(2) has an H, but it is not "small" with respect to H

Procedure:

(1) Given H

(i1) pick any normalized WY=¥(a,b,c,...)  where (a,b,c,...) are some variables
(ii1) calculate <‘P‘ H “P>

(1v) minimize <‘P‘ H ‘ ‘P> with respect to its variables, for example

require %<‘P‘ H“P> =0, solve for b, plug b back into <‘I"H“P>

(v) the minimized <‘P‘ H ‘ ‘P> you get is guaranteed to be > the real E, . soit 1s an upper limit on E..

Prove this:



Let W= trial wavefunction

Let ‘(pn> = the set of true but unknown eigenfunctions of H

(Hlo,)=E0,))

Because the ‘(pn> are the eigenfunctions of something, they can be a basis in which to expand ‘P:

¥)=2le.) e, |¥)=2c0,)

Find (H)=(¥|H|¥)
:<;c,,,\¢m>‘H;c,1\<Pn>>
= ;;C;Cﬂ <(0m ‘H¢n>

E,|o,)

=Yk (0,0,

)

(H)=2l £,
Butf =2 E_ . since n could be any level

So (H)2Y e[ E,
()2 E,3e|

. 2
what is Z‘cn‘ ?
n



“P> 1s normalized:
1={]¥)~(Se.p.
=.,c(0,

m,n

Zor)

0,)

By

n

C

n

So <H > > Eg regardless of what ¥ was chosen

To make <H > approach E_, minimize it

Example use of the Variational Method:
-n d’

Suppose H= o e + Emcozx2 (this is the Simple Harmonic Oscillator (SHO), suppose you did not know
m dx
how to solve this exactly)
Guess P=Ae ™" (b 1s a variable we can use later in the minimization)

Normalize V:

e o il

257
So Az{—}
T



Calculate <H>=<‘P‘ H‘ ‘P>

1

2b P 7 | =R d* 1 .
— J dxe ™ —— +—mw*x ™™
T 2m dx* 2

Wb mw’
<H> - 2m ¥ 8b

Minimize:
2

O:i<H>_h2 Smwz_hz_ma)

by ' om 64> 2m &b
2 2 2
So 8b* = ”;l 2
_mo
2

Plug this back into <H > ;

() ..d_hzma)+ma)22h:ha)+a)h:hw

C2m2h Smw 4 4

2

which is the exact Egmm ., for this H



I. Intro to Scattering Theory

This picture illustrates the parameters and jargon of scattering

scattered (detected) particle beam
dQ

75
0
_ > Q —7 Z{: > transmitted beam 2 —

incoming beam

target
Why do we care about scattering?
Convention: attractive potentials are drawn as negative

repulsive potentials are drawn as positive

Example: V
,} /—\ apparent "centrifugal barrier" potential this is
. (0 +1)

th >— term in the Radial Equation
2mr
0 > r
<4+
| aitractive nuclear potential
0
Any time a particle state is an eigenfunction of the H(including the potential) but the state has E > 0, it is
a scattering state 79
N\

/\/\/\/
\Q\/ _these are both scattering states
>




Facts about Scattering States:

(1) So scattering states are no less relevant than bound states — both kinds give information
about the shape of the potential

(1) Recall that the eigenfunctions of a hamiltonian form a basis--so we do not have a basis
if we take the bound (E<O0) states alone.

(ii1) whereas bound states are quantized, scattering states are continuously distributed in energy

Goal: describe ¥

scattered particle

Assumptions:

1) Before scattering, particle is free, travelling in Z

p‘ ane wave
Call it ¢, (7) = &*

X its momentum is p=fik

Goswami uses "¢" for incoming, "P" for outgoing

ignore normalization for now

2) Assume V # V(t)
3) If the VZV(H) only, then the outgoing particles are spherically symmetrically distributed, so

far from the center of V, the outgoing scattered waves reunite a plane wave again; they will have no
ikr
e

dependence on "r" other than ¥ ~—
scattered r

This 1s a "spherical wave", like a plane wave but weighted by r to maintain probability conservation as

the diameter of the wavefront increases with r.



I. Probability Current in Scattering
II. Different Cross-sections

III. The Born Approximation



4) The scattering may actually send more particles into a particular direction in 6 and ¢.

ik
el r

So allow Y o= f(6,0)-

r
f(6,p) is the scattering amplitude

5) The total wave detected after the scattering is

v the part of the incident wave that N the scattered
! transmitted without being modified wave
ikr
\Poutgoing _ ikz 0 e
TOT =e  + f ( 9(p) ' ,

I1. Probability Currents in Scattering
Recall that the 'V is related to the particle's probability of location but the only way to get a sense of the motion

of the particles themselves is to calculate the probability current.

Recall T = i(l}f"?l{l — YY)

b .
2mi

So T2 =5 (9 VoV

ik
p=e
o1 ikz A
Vo =ike™z
* —ikz
p =e

Vo' =-ike ™2
h —ikz +7__ikz ikz . —ikz \ 2
=——/|\e “Vike™ — e (—ik)e™ )z
mi

z=

= L(%k)z‘ _ Ik

2mi m

3 |

as expected



Jueonerns = %(\P*W — ¥V
ikr

Y=o f(9,<p)-e7

so V¥ will haver, 6, and ¢

terms. Examine each separately.

Y 1Y .
In spherical coordinates V¥ = fa— + 9—8— +¢ 1 o
or r 00 rsin® 0@

1
To get 6 dependence of J, let V¥ — __889 only
r

iki
ez r

= £(0.0):

r

—ikr
e IKT

\Pscaz* — f*(9,¢) . -

h f*e—ikr laleﬂ'kr ~ fe+ikr laL*e—ikr

2mi ry radod r r rado r

_nafey o)
2mi r’ 00 00

— N | Y Scattering_

Sol, =0T
3
r

n.n

So the total o, at any particular radius "r" is
1 dQ

é-jr2d£2~—3r2d£2~— soast—oeo, J, -0
r r

1
~—,80asT—>0o0,] —0
[ ;,.3 ¢

Similarly, J

To get the r-dependence of J, let V¥ — E)i only

r
i( feikr J _ f|:l’ikeikr 2_ o } feikr 1)

orl r r r?




Soy =p-Jor = P K [t ][f J(ﬂ‘kr _1)- [ e j(f o ](_ikr _ 1)}
: Pt 2mi r r r r

—%@[Hkr—lﬂkrﬂj
mi r
2
nof
—%%[2”{7"]
el
m 7'2

So the total # particles at any particular radius r is

2 2
oo direa = - g = VL o L o p|f] de
m

U

m r
independent of r

So as r — oo, the outward current is all in the T direction

III Different cross section

Amount of scattering per 0 and per ¢ is indicated by the "different cross section" of the process

\ J \ J

| |
: do
amount of scattered particles that are symbol 10

directed by the target into a specific
0 and ¢



d
To define —G, assume
dQ

N . N particles
(1) incident beam is a current of — pamees

N area - time

yd
z

Area ,
=

{ ]
|
x=VAt

(i1) target scatters AN particles into solid angle AC per unit time

centere! on angle (6,0)

AQ
AN
Incomin fa)
£ -2 AN=J*" - dArea
target Notice N and AN have different units
do .
@ is defined by
dQ
d—G = lim iﬂ this has units of _ared
dQ  sa-0 N AQ steradian

Plug in N=J" - 2 = Ik
m

and AN=J"" . ddrea = @\ 1] de
m



2

io_1 4| ae

Then 1 = L’: 0 = ‘f(@,(p)
A typical area that enters in a scattering process is 10~* cm”> = "1 barn"

do
I1I. The Born Approximation / dQ

For a potntial of arbitrary strength and range, we must calculate f (9,(p) using a procedure called

Paritcle Wave Analysis (we will do this next time)
But if we know that the potential is weak and has a short range, we can approximate the results by

using time-dependent perturbation theory:

Simplfying assumptions:

(1) Effect of the short range:

Assume that the potential turns on when the particle is within its range, and then turns off. So

V = V(t) and we can use the time-dependent pertubation theory

(11) Effect of the weakness:

Assume that before and after scattering (i.e. when the potential is "turned off") the particle has

E >> V. This means that the strength of scattering is small, so the final state is still a plane wave (not

a sperical wave), with only its momentum altered

1 ik, 7

So assume ‘Pl. =—c¢ and



(111) Recall time dependent perturbation theory leads (for some situations) to Fermi's Golden Rule:

Prob 2 = -
d afto = 771-1—112 p p = average density of final states
i=f

Transition rate between 2 states = W =

? = <ﬁnal| H, | initial>

i—=f

usually the two states are different bound levels of a potential
Here, treat V', and ¥ ,as the 2 levels

d
(iv) Relate W to £ to set information about f (9,(/)), the nature of the potential itself

" [r(o)

# of incident particles

Recall =N"™=J" 2=|J,

unit area - unit time

# of incident particles scattered into (9,q0) _ e do I do

unit area - unit time aQ " 4o

Definition of W: transition rate from ', > (where ¥’ = could go into and 6,¢)



[. Born Approximation (continued)
II. Partial Wave Analysis



. o /4
So the transition rate per unit solid angle=—

\ | 4m
|

# incident particles scattered into (0,¢)

This is equivalent to . —
unit area - unit time

SoJ. .d_GZE

" dQ  4rm
do_1 W
dQ J. = 4An
Plug in:

incident beam: /\ length a particle travelling with velocity v

< I > traverses in a unit time
<>—) % @/-\Ama

number L ‘ ‘ ‘ ‘
T = T velocity of incoming particle
area-time L
p hk
v="—=—
m m
hk . :
SoJ =— V', is normalized so that
mV number 1

volume V

2 —

2
Now we need WZ%‘Hl p
inf




To calculate density of states p

Need total # of states in the 6-dimensional phase space volume:

AXx, Ay, Az, Ap_ ,Apy Ap_

To do coordinate space part, consider plane waves in a box ("infinite 3D well") of size:
LxLxL=V

Boundary conditions demand:

27wn
= x (n =... ,—2,—1,0,1,2,......... )
* L
27n
k = 2
Y L
B 27rnz
=L

# of states d°n in box is

3 Ldk Ldky Ldk
d’n=dn dn dn = X z
o E 27 27 27




(2x)

= ——dk dk dk.

3

use p=rik

so dp=rhdk, then dk=d7p

alsoL’ =V
V dpx dpy dpz
(2ﬂ)3 h h h
V : :
= -V, convert to spherical coordinates
phase space
(277)
— 20
hase space = P dp sm@pd@pdqop
=p2dpd§2p
integrate over dQ) = — 4rm
=p’dp4r
3 4 >
Thend’n = s4npdp
2rh
d’ 4 d,
So p= 2 = 4 p? P



d’n V-4m ,dp, mVk
dE  (2rh) "/ dE 2’ h’

density of states: p(E)=

2

: . P,
using non-relativistic E - = —L thenp, = hk,
2m 4 /

? = <ﬁnal‘H1 ‘initial> = <ﬁnal‘ V‘ initial>

i—>f

Volume _
K-k, )7

= d&rH (7"

Define q = lgl. —k ; called the "momentum transfer"
Then
V - —
H, =—[d'rH (F)e"”
0
o) oo T 2z
== J r’drH (F) J e **%sin0do where J dp=2n
r=0 6=0 0
4rr : I
- J H (r)singr - rdr the standard form for the Born Approximation

\ J
|

HH1 (q)H




So W——\H\ P

2 Vk
6]

h 2h2
Then
dG 1 W
dQ Jmc 47r
mV 1 16mtm, .. 2
o P H (g k,
hk 477:hq
> do  4m’ 2k,
0,0) =—= H L
HCXO W‘ (@) ¢

If the scatter is elastic, & ;= k., so 7’ =1

i

#
qz‘;;f_;;‘:\/(/;f_zé).(zg k)= \/k2+k2 2k k, cos

ot
I 0 ifelastic k, =k =k

_ {2]{2 (1- cos@) \/—
—2k1f(l COSQ) =2k /sm 2ksm

-m|\H
70.0)=\|1 0.0 —\/ZE H(q)| —rm | (@)

hzksin(eJ
2

this 1(60,¢) is valid in the Born Approximation



II. Partial Wave Analysis

Goal: For a potential V, find the scattering state, then extract £ (8,¢)
Must solve Schrodinger Equation:
—h?

2m

VY =FEY

scatter scatter

Consider 3D V, so ‘P=‘I’(r,9,go). Try to solve Schrodinger Equation by separation of variables, so guess

\Pscatter = ’Z(I") ' g(e’(p)
Plug in, recall

2
szii£ 2 aj+ L 9 [sin@i]—k 1 J

2orl o) ~sneool 96 ) rsinddg’
\ J
|
—J?
hr
—h’ 0 L
So we get {Zmrz [rz gj + N +(V - E)}(r) -8(0,9)=0
~h’ o r°ou(r)) «(r)[
0,p)— + 0,0)+(V —-E -2(0,0)=0
- g(0,9) ar( 5 J P g(0,90)+( )2(r)- g(0,¢)
_ 2
Multiply by 2mr

() g(0.9)



1 i rza'z(l’) _ ng(ea(p) _ 2mr2 (V _ E) =0
o(r)or\ or n’g(0,0) R
L 9frioen)) 2m” o Le(6.9)
«(r)or\ or n’ n’g(6,9)
f(r) only f(6,¢) only

So both sides = same constant, call it /(/+1)

Then RHS becomes:

L8OD) _ iy

h"g(6,9)

L’g(6,9) = 1*((1+1)g(6,9)

This is solved if g(6,0) =Y, (6,¢), the usual spherical harmonics

LHS becomes:
1 0 (r0(r)) 2mr’
= - V — E)=(((+1
(1) 8r[ or ) n’ ( )= HE)

—Ze*

When we studied the hydrogen atom, then V=V ——, and =(r) was only solved by

Coulomb ~—

R (Laguere Polynomials)
Now for general V, #(r) is not limited to be R (r)



I. Partial Wave Analysis (continued)
II. How to find the phase shifts



H "

Especially since indexes bound state level, #(r) # = (r) for scattering.
Since there is and "/" in the equation just call 2(7) = 7 (r) for now.
So

\Pscal - vcal (I" 9 (p) =4 (]") fm(e’go)

Im

The most general ¥ will include all possible /, m values, so
\Pscal = ZZ"?}(F) ’ Yv/m (03 @)
 m

Study the radial equation for the ='s:

1 d r20:(r) | 2mr’
»z(r)ar( or ) n’ (V= E)y= D)

2m(

l Define k*(r) = = (E -V (r))

1 d’ d
z(l’)( ;+2r;}(r)—r = (({+1)

l Multiply by —= ( )

& d 2D,
[d +2rd jz(r) k2(r

I/'

Given V(1) get k, solve for #(7),
How to do this in practice:

(1) consider region where r — oo



I. Partial Wave Analysis (continued)

Read Chapter 19



1
IfV~— (n22), then
r

1(2_£(€+1)~2mE_ 2Zm  L(L+]1) 2mE
r2 h2 hzrn ]"2 r—>00 hZ
Y < —call this (k’)’, not a function of r
1
So note this approximation does NOT work forV, ~ ~ —J
r
So as r — oo, the radial equation
- "
d—+2ri—k'2 _aeh 2?(r)=0
i dar’ dr 7’
Define p =k'r *this only works if k’=com
then 4 = k’i etc.
dr dp
d> 2d 0(+1
L2d D

+1 z =0
dp*  pdp p’ }(p)

This is the Bessel Equation so the solutions are:
«p) = 4j,(p)+ Bn,(p)
n, are irregular at r=0, so set B=0

Then ¢(p) ~ ]((p)TlSIH(p_ g%]
' p

Plug in p = k’r and

ix —ix _1

e —e

- _ Z_i(e—ix _ eix)

sinx=



s [ ) e

- (=) - 3 e
" 2ik’r || Lo | . .
Y outgoing spherical wave
so it was reasonable to predict that
incoming spherical wave g gy S (6,9)e™

Tor
r

we will find that f(60,¢) is given by
So we have Y¥(1,0,¢) forr — o (V — 0)

the "¢"'s

(i1) Use ‘P( r— oo) as a model for ‘P( r< oo)

It turns out that the only effect of adding a V is to make

. 1 —i(kr—ZEJ i(kr—ZEJ
2(r <oo, with V #0) ~ Py e —-S,(k)e
i
l_Y_} \_Y_}
incoming wave S, (k) must satisfy ‘S (/‘2 =1

unchanged This guarantees that probability is conserved when

we take V"W =2 .Y Y
(i.e., the potential does not allow any particles to
be created or destroyed, it just changes their

5,0 =1

direction of travel)

S (k)= g/lsomething, () By convention "something" is called 26, (k)



. T . T
-1 | 5 s _{kr_ZEJ 126, (k) ’(kr_zEJ
= e e ‘e —e e

This looks like #(r — <o) except: (1) multiplied by e (which disappears when we calculate ¥ W) and
(2) the wave is phase-shifted

Interim conclusions:

(1) The principal effect upon a wave of scattering from a potential is to be phase-shifted
(2) Recall W22 = #(r)Y,  (6,0)
l,m

L each scattered wave is a superposition of waves representing different

angular momentum / states.
Each / state gets a different phase shift J,

. : 1 :
(3) all of this is appropriate only for V ~ —, n > 2, so not for the Coulomb potential
r



The way to handle the Coulomb potential is to write it as

—ar

v-£ (which falls off faster than lj,

r r

do the whole calculation, then at the end let a — 0.

(iv) Goal is find the 0, 's



L. How to find the phase shifts J,

First Question:

It looks like W requires an infinite # of 3,'s

(‘P“"” = Z%Km] Do we really need them all?
/=0

NG

Answer: No.

Suppose that the incident particle is not aiming directly at the target. Define the impact parameter "d" as

the perpendicular distance by which it is offset

incoming particle /
—>

.................................... )(.............................
target

So relative to the target, the incident particle has angular momentum ‘L‘ = ‘r X p‘ =d-p

Suppose the range of the potential is r,. Then scattering is negligible if d >,

But d=£
p
\l, But L=/({ + D) = (h
d= @
p
\L But p=fik
v



I. Finding the 6,'s for a scattering problem: Example
II. The relationship between 6, and f(0,¢)

III. Totoal cross section
IV. The Optical Theorem

Read Chapter 19



|~

l Sod=

So scattering is negligible for

d>r0

|

s

So if we estimate the potential's range r, and know
~r0k
. 1 p
the incident particle's k=--, we need only sum 2
(=0

Often this includes only /=0

Second Question: How to find the J,"s that do contribute?

Procedure:

(1) Specify the potential and the energy (~k) of the incident particle

(ii) Determine /271 k

(ii1) Solve the Radial Equation for time independent Schrodinger Equation inside the potential: get =

(iv) Solve the Radial Equation for time independent Schrodinger Equation outside the potential:

(i.e. where the potential is free) get. . =2(6,)



I. Example to find phase shifts J,
II. The relationship between 6, and f(6,¢)

Read Chapter 19, Section 1 only



(v) Match-  and -

ide outside

and thier derivatives at boundary and solve for J,

Example: s-wave scattering from a square well potential at low energy

-V forr<a
0 forr>a

(i) Given V(r)Z{

incident particle has low energy that
2m(E)

hZ

=k<<l, so ka «1
a

(i1) Recall we only consider angular momentum /¢ states with / < (range) - (k), so

1 < a -k means consider only /=0

(iii) Solve Radial Equation inside well but not below top of well /\ solve here
A Ve e
i.e. forr<abutforE>0 —
1 d(,d) 2m H0(0+1)
S P P T D I Sain | P
LZ dr ( dr) h? [ ") 2mr? nside
i 1et uinside = riinside and KZO
d? 2m
Fuinside + ?(E - V(r))uinside = O
2m 2m(E+7,)

Define k, = h_(E_ V) = =




2
uin 2
dr2 + kinuin = O

u = Asink r+ Bcosk, r
Whenr=0,u, =rz =B
=0-2, =B
this means 2 — oo unless B=0
So set B=0

u =Asink r r<a
n m

(iv) Solve Radial Equation outside well but for E > 0:

D 2 b0y =0

" o
=0 outside
2mE
v Letk = 2
2
u
—2+k u =0
dl"z out  out

u =Csink r+ Dcosk r
out out out

= Fsin(komr + 5[:0)



(v) Match solutions at r = a:

uin (a) = uout(a)

Asink, a= Fsin(kowa + 50)

(vi) Match derivatives:
k Acosk a=k F cos(koma + 50)

Eql
(vii) To solve for §,, divide =4,
Eg2

kitan(kma) = kLtan(kama + 60)

in out

itan(k a): 1 [ tan(koma)tan50 ]
k " k l—tan(koma)tan50

in out

in

tand. =

‘ k
1+( k”” )tan(koma)tan(kma)

in

"Equation 1"

"Equation 2"

"Equation 3"

Remember this

_ tanx+tany
use tan(x + y) = —1 tanxtany

Define some K such that

tan(Ka)E[%}an(kma)

in



tan(Ka)— tan(kouta)
1+ tan(Ka)tan(koma)

tan 50 =

use trig identity

tanx —tan y

tan(x-y)=
() I+ tanxtan y

tand, = tan(Ka — koma)
l equate the arguments

So
50 =Ka-k a

in

k
0, = tan™' (kL‘”tan(kma)] —k, a for a square well




II. The relationship between 6, and f(6,¢)

Recall from physics reasoning we expect after scattering

ikz + f(e,(p)eikr

Pl = o The 6,'s are related to the f{6,0)

r

So
RO _ gy

scat

r

tot —
\Psiat _Zz/(r)Y/,m
f,m

20+1(0—m)!
4 (L+m)!

If the incident wave is a plane wave travelling in Z, it can have no angular

A
ButY, = [ } (-D)"e™ P (Pg’” are Legendre Polynomials)

momentum vector pointed in Z (i.e. it is not rotating toward ¢3) No angular
momentum in Z = quantum number m=0 for the initial state. Since angular

momentum is conserved, the final states must also have m=0.

YA
20+1
So set Y :sz{ } P

l,m 471. l



i0

andsetré(r):e sin kr—f—ﬂ+5f
kr 2

Multiply =Y, by an unspecified coeficient C, to smooth the transition from =(r — o) to 2(r < <o)

sin[kr—m+5]
2 14

the \Pscal = ECKPZ(O)
l

We want to write e“ = f( P, efc.) too.
eikz — eilcrcos@

expand this in the basis set of hydrogenic eigenfunctions
ikrcos@ __ . .
© - Zaejzyz,m — Zaz]épz
l /
l since m=0, we canreplace ¥, — P,

multiply both sides by P, , integrate over 6

fe P (0)sin0d0 =Y a,j,(kr)[ B, sin0do
0 (=0
] \ }

|
21" j, (kr) ( 2 ) j

\




So we have

2
2i"j, a]( J5,
l /z{;ﬂfzf_l_l o0

: 2
2i"j,=a,j,
‘ 20 +1

Soa,=i'(20+1)

We are studying everything at relatively large distance from the scatter,

so use asymptotic form of j, so relplace

sm(kr—m-]
2

kr

Ji=

0e* =Y a,jp=3i(20+1)jP
V4 V4

f(e ) o Sin(kr—2+5[j Sin(kr—2+5€]
,Q)e .0
Then “——="——= ;C P —;z (20+1)P, P

This 1s solved 1fC =i (26 + 1) % and

£(6,0) = %2(26 +1)e sing, P,
/

2

The— 16,0 = |3 (20+1)e” sin6, P,

4



II. Total cross section
- . do : . L
The total cross section "o is the integral of 10 over all solid angles, so it gives an indicator of the

total strength of scattering: o indicates how much flux is removed from the incident beam

2

o=| Z—gdﬂ = dQ%‘;(zﬁ +1)e sind,P,(6)

( t

[2(2@ +1)e sin5[PZ(0)} [2(2@' +1)e sin5[,P[,(9)}

v (eiﬁf )* _
G—ZZ(M,: 1)( 2£k+ 1)61-(5,5,) sind, sind, [ dOP.(O)P. (6)
¢ v \ }
l !
4r
0,,
2041
A7 .
=— (2€+1)s1n 0,
(=0




I. The Optical Theorem

II. Resonances

II1. Intro to the real Hydrogen Atom
IV. Relativistic KE

V. Spin-Orbit Coupling



1. The Optical Theorem

Recall
do _ 7(0,0)= li(zz + 1)ei5‘ sind P.(6)
dQ s \ k pn 10 ,

|

Since there is no ¢ dependence on this side, this can just be called f(0)

Consider the case where 6=0

20+1)
Then f(9=0)=f(0)=z(T)e’5" sind, P,(6 = 0)
Y4

c055(+isin5k. 1

f(0)=2(2€T+1)cos5é sind, + iE (MT—H) sin’ &
l

l

!

So Im(f(O))Zﬁ-G, or

4 :
o= % Im(f(O)) The Optical Theorem

What this means:



Recall 6=0 1s the direction of the incident beam.
o represents how much of the incident flux is removed by the scattering
The "removal" is due to destructive interference between the incident and scattered waves

in the 6=0 direction.

4r . . .
(The - and the "Im" are not obvious to interperet without more work.)



IV. Resonances

Recall tand tan(Ka) — tan(k,a)
ecall tand, =
* 1+tan(Ka)tan(k a)

Since K, k_ ~ \/E , JE - V,, itis possible to choose values of E that make RHS — oo

50 tand, — oo,

nw
SO 50 - —
2

when this happens, sind, — sin(?j —1

4 &
Recall O'=k—7f2(2€ +1)sin’ §,
/=0

suppose we are in the regime where only /=0

contributes to the scattering
4r .
Then 6 = —-sin’*§
k2 0

so when sind, — 1, this ¢ is maximized

The matching of E to V and a that achieves this is a resonant of the scattering condition.



I. The Real Hydrogen Atom-Intro
Message: Up to now we studied the energy levels of an e in H by assuming that the

Hamiltonian is just:

2 Z 2
H: KE + I/coulomb = (;; o i
m r

due to
nucleus

—me*

2h°n’?

This was only an approximation, for these reasons:
2

(1) We used KEZ;;. This 1s non-relativistic. Need KE

m

we get Y =

relativistic

(2) From the point of view of the e”, the nucleus appears to be moving. So the nucleus is a
2

that the e reacts to.

moving charge: it creates a B as well as the
r

Plan:
(1)Calculate H , =H  —H

KE KE "correction"
(2) Calculate H due to

e \
"H "

spin—orbit



(3) erte HTOT = Hm)n—rel t Coulomb " " rel + Hspin—orhit
KE "correction"
\ J |\ J
! |
call this H | call this H,

= H0+ Hl
(4) Use Pertubation Theory to get E = E'” + E'V

II. H

relativistic
Recall from Special Relativity, the total energy of a free (not in a potential) object is:

E=( pct+mct )5 = KE + rest mass energy
( J

2
mc

pzcz 2
=mc’| 1+ 2 — mc?
m-c

1
2 2
=mc’| 1+ 62 —mc
m-c

(1+x)* =1+ kx + x4

| Expand in Binomial Series
\/ k(k—1)
21

2
here x= P and k=l
m*c? 2




2 4
KE:mC2(1+ P +l(—lJl P 4—....]—mc2

2mPct 2\ 2 Em“c4
_p 17
2m 8 m’c?
4
SOKE=KE ~ ——F
non—re 8m c
call this H

relativistic
correction

III. Spin-Orbit Coupling
Recall the Biot-Savart Law from E&M:

dl 1
r
X
B(at x)zﬁl dl >3< L
4r r
Suppose the I is due to just one charge q moving during time dt
-~ - dv
Then ld7 =L d7=¢% = ¢v
dt dt
B(at X)Z&q vxr

A~ p?



Suppose "x" is the location of the €™ in the rest frame at the e, the apparently moving q
that produces the B is the proton, so q=+e

If the e's velocity with respect to the proton is defined as "v" the the p's velocity with
respect to the e must be "-v"

So to find the B at the location of the e, let

q—te
V-V
_ e (—\7) X7
Then :‘u_0—3
4r r
B Her xv
AT
Convert to Gaussian units
= _erxv
reverse ; 7’3
l Recall L=F X p =7 X mv
L
Sorxv=—
m
= _ e L
?(t);due mc r3
Recall that ™ has an intrinsic magnetic moment m=—s

mc
and an object with an m develops additional potential energy when it is placed in a B:



I. Intro to coupled 2-particle wavefunctions
II. Finding ES) for H

relativistic spin—orbit
correction

II1. The fine structure of the H spectrum



Notice we have not been entirely consistent because we used relativistic formulas

(E =\ p’ct +m’c’ ) for the H , correction but non-relativistic Tand p for H .

. . . 1
If we put relativity into the H we get another -

ducto B

" "n_
spin—orbit 2 2 3

mer T \_/ this is the proton's L

relative to the electron

this is the

electron spin

IV. Intro to coupled 2-particle wavefunctions

2
Z
We know that for H—p— — ﬁ
2m r
me'
© = _ fore™ in H.

no 2h2n2



We want to find E'”, the first-order correction due to the perturbationH = H , . +H
n 1 relativistic spin—orbit
correction

pt 5L
8m’c’ ’ 2mPctr?
So we need <‘I"H1 ‘ \P> — ES)

Question: what to use for "‘ ‘I’>" ?

concerns only the e's behavior so it seems possible to use “P> = “I’” [m>, usual

relativistic
correction

hydrogen wavefunction

However, H_ involves § (due to ¢ “) and L (due to p) so the “P> must represent the

pin—orbit

combined system of 2 objects with (coupled) angular momentum

we will show how to find the representation of such a coupled system. For now, assume it exists.
What must the “P > be like:

combined e-p
Recall total angular momentum J from Chapter 11

Suppose we ignore the proton's spin. Then for the e-p system:

=L +5 (in the rest frame of the e”)

proton electron




I. Calculate E” forH  + H
n rel spz@
corr oroit

II. The fine structure of hydrogen

III. Anomolous Zeeman Effect



One way to describe the “P) of the coupled e-p system is to represent:

The unperturbed energy level of the e — n
The total angular momentum of e and p — j

The "m" quantum # that goes with j — m,

The part of the total angualr momentum due to the proton — /¢

The part of the total angular momentum due to thee — s
Call this combined wavefunction ‘néjmj> (supress the s, assumed to be ﬂ e))

So the operators that have eigenvalues)in this basis are

are diag!)nal

¥ |ntjm )= j(j+ DR | ntjm,)
I \ nzjmj> = 00+ DR \ nfjmj>

: nﬁjmj> =E ‘ nfjmj>

Hunperturbede ngjmj> = 2h27’l2

p2 YZeZ

2m r

J ‘ ntjm,) = mjh‘ ntjm,)
S2

nfjm}.> =s(s+ i’

nfjmj>

V. Finding E” forH .
n relativistic spin—orbit
correction

¥)

(o] e |

We want E'" =<‘I"H1

2 2.3
8m’c 2mcr



_ 4
:<‘{’n[m‘{ P }“an>+=<n€jmj

32
8m’c

do this first

2 2
_ _ P €
Recall Hi;npermrbed = HO - % - 7
p2 62
So —=H,+—
2m r
4 2 2
So P > = H,+ ¢
4dm r
2
4 2
-p -1 e
So = H +—
8m’c®>  2mc? oy )

—_ 4 ]
so ([ 2 .. -

-
es-L

2 2
2m*etr?

i

] 2 2
=2m02 <\Pnfm Ho"‘%} Ho‘*‘%]‘\{l /m>
1 2\[ 2
e, Hﬁgj_gow/ <, >}
-1 i
2mc i r




1 1 1
_ <wn€m\[(gg)2\m>+Egez;\xpm>+ez;Ho\xyW>+e4r_2\1pm>}

E:,) ‘ nfjmj>

-1 1 1 1
= 2m02 |:<l}lnlm (E;? )2 ‘ an(m> + Er(t)ez <\Pn2m ‘;‘ lIlnlm> + ES@Z <\Pn€m ‘;‘\{ln(m> + 64 <l}ln€m r_2‘\PnC/m>:|
\ J ( J ( J ( J
| | |
o\ 1 1 1
(E") a,n’ an’ a§n3(£+ %)

2

where a,= the Bohr radius = >

me
PluginR Y, , etc., do expectation values or look them up in Goswami Eq 13.25

-1 me* ’ L[ —me’ 1 e
SO H [ = 2 2.2 + 2e 2.2 2 + 2.3
v | 2mc” |\ 2h°n 2h°n” )\ a,n a,n (€+%)

2

e
Define o = h_ "the fine structure constant"
c

2 4
—mc o 1 3
ES) = Hrel = 3 1 - 4
rel .corr. corr 2 n (f + 5) 4n

We don't know effect of §- L on ‘nﬂjmj> we only know effect of I?, L?, s*, J_. So we have to rewrite

- L in terms of some of those:



L. Finding the B (continued)

spin—orbit

II. The fine structure of Hydrogen



Recall J=L+S, so
7=7.3=(L+8) = 2 + 5% +2L S,

soL.§-1—L=5
2
So we want
2
<Hspm_0rbt> <n(]m‘ PICREE (JZ Y S S2)‘ nﬁjM>
2
_ 4;202 {hz [JG+D =+ —s(s+ 1)]<n£jm\r—13\ nzjm>}
|
we will see later in Chapter 17 that the ‘nﬁjm> are
linear combinations Za RY ‘S m
/ T '\ \ e spin
*Clebsch-Gordan coefficients
So <n€jm‘r—13‘n£jm> =
1
<RM,‘F‘RM>-{<‘Pﬂm“f‘m><s,m§ s,ms>...}
Again do expectation value ‘ Y a Y /
of'look up Goswami Eq 13.26 C 1 by normalization

1

— for / #0
a,n (L + ) (L +1)




ent [ JG+D -+ = s(s+1)]
> B dm’c’ an’ (L +2)(L+1)
Recall the relationship between J, L, and S:

J=L+S

It turns out that the eigenvalues are related by

So <H

spin—orbit

{+s
=1 or (we will see this in Chapter 17)
l—s
eZ
Plugins=- and j=(tsand o = —
hic
ED = <H > _ mc'o’ 1 . / when j=/( + s
Mspin-orbi spin=orbit 4 U+ HU+) | —r-1 when j=/—s

V. The fine structure of the hydrogen spectrum

Recall the unperturbed energy levels:

4 2 2.2
-me’ ¢ —mca
2

EO —
2R ¢ 2n?

Compare E{’ =-mc’ [number of order 1, depending on / ]a“

and Efql) = +mc’ [number of order 1, depending on /¢ :|064

spin—orbit



"ror Meel corr. nspin—orbit 2 n3 / + L 4n
2

2.2
EO —g® LpH M { 1 3 }
J

'_ —1
Jj=l+s or l-s, s=-

(we have derived this for / # 0)



If you plug in

e=1.6x10" C
h=1.05x10"*J-s
¢ =3x10®* m/s

1
ougetoy = —
YORE& 137

"The most important dimensionless # in physics", since it relates the fundamental constants of
E&M — e, QM — 7, relativity — ¢

So the correction Efll) are ¢” times smaller than the unperturbed levels

1 2 _ -5
(&) =5x10
So the result looks like
n=2,(=0orl £=0
-34¢eV \ 0= l,j:K‘I‘S I 1073 v
N (=1,j=t-s v °©
10.2 eV
n=1, /(=0 this line does not split since there is only /=0

-13.6 eV

The relative smallness of the splitting compared with the separation

between unperturbed levels is why the splitting 1s called a "fine structure"



I. Compare 3 sources of line splitting

i) spinless classical charge q moving in B

external

classical momentum of electron

get cross term A- p

Because L=t x p and
B=VxA

leads to "Normal Zeeman Effect"

:B-L in which energy levels depend
onB-L
(i1) real €™ moving in field of nucleus
has spin s a charge moving in e's reference frame
l so it is a current loop as seen by e

has magnetic moment produces a B

—eS :
M=—2 Biot Savart Law: B=f(L)

mc

energy=-m-B =)S-L | "spin-orbit coupling contribution"




iii) real e moving in B
L and S

T —

leads to magnetic moment leads to magnetic moment

external

where g=2, also non-classical

Then E=— M or B= —(L + 2S) B "anamolous Zeeman Effect"
2mc

Re This effect, 2 questions:
1) How do the non-classical terms (e.g. g=2) arise?

11) How to calculate energy levels?

II. How does electron g=2 arise
Introduce conceptually the Dirac Equation = relativistic version of the Schrodinger Equation
Assume Special Relativity: E* = m’c” + p*c*

Choose units in which c=1. Take square root.



E=*\ym"+p’

We are used to replacing E by operator ig

p by Vv

Hard to make a direct replacement for the

Dirac guessed that the "relativistic Schrodinger Equation" would look like:

(E) P  (m
i%‘l’ =—iot- V¥ + Bm¥

To recover E* = m’ + p?, it turns out that the 3 o components are constructed from the Pauli matrices

0 o, I 0
o = ’ and 3= (both 4x4)
’ -0 0 0 -1

So the Dirac Equation operators are 4x4 matrices.

, , o : : ..
Dirac Equation: (i}/“ For mj‘l’ =0, y*=B-1, y'=Ba’ ,sum over repeated inices
x

Expect the solutions ¥ to be 4-component column vectors. In the proper basis the look like:



1
0
G-p particle, spin up
E+m
0
0
1
0 particle, spin down
G-p
E+m
0
c-p
E—m antiparticle, spin down
0
1
o-p
E—-m
0 particle, spin up
1
0

Check that Dirac Equation converts to Schrodinger Equation in non-relativistic limit

Recall how to insert an electromagnetic field into a Hamiltonian:



Recall H = p_ but
pamcle m
‘L
U oc)

particle -

in EM

field

o . . d .
So in Dirac Equation let i— — i———e4
ox* ox* H

Dirac Equation becomes

iy“(ii— ied j\{f— m¥ =0
ax# M

X\
Call ¥= i e P
?,

?,

use % — E, etc, y's represent couplings through off-diagonal
(E—m—eAO))(:—ﬁ-(iV+eA)g0
(E—m—er)goz—é-(iV+eA);(
Non-relativistic limit: E=m (p — 0)

and ‘eAO‘ <«m



Solve simultaneously to get
(E-m—ed)z- (ﬁ][a (iV+et)] 2

A useful identity (check by direct substitution):
(6-7) =y| +ic-(7x7)

Then

i

(E-m)}(z{er +ﬁ|iV+eA|2 + (z‘V+eA)><(iV+eA)}x

2m

Apply vector identities to get

1 2 ]
(E-m)y =< edy+—(iV+ed) +=—6(iV+ed)x
‘ , { I 2mLYJ %m I}
t t

KE 0 P %Ean@
m
-
B

So the associated Hamiltonian is

1 2 e =
H=—(p—-ed) ——06-B+e
2m(p ) 2m 4
Recall S=%, SO

H = 1 (p—eA)2—£§-B+e(p
m

2m



1

1 .
+ e focus on this

Hz%(p—e/l)

2

SN
C.m
oy

Recall classical magnetic moment of a circulating current is

M=(current) - (area enclosed)=I - 771’

But I= _q =q- 4
time 2nr
SoM, =V g 9
classica 271,.’/' 2
: L
But classical angular momentum L=mvr — vi=—
m
SoM, . =—Lp
classica. 2m
Now replace L, . — S

S-B<2-M

o

Then

classical

This is the electron gyromagnetic ratio (leads to g-factor)



I. Anomolous Zeeman Levels

II. Hyperfine Structure



2) Now find anomolous Zeeman energy levels

ignore for now

H=H

unperturbed + spin—orbit rel anom
T Zeeman
A \ \ \ |
’ !

[ | |

2 2 2
Z 1 Ze - -
Pz — i A (L+2S)-B
2m ro 2mc r 2mc
[ I J
| |
L-S coupling forces us to focus on this

use the | jm> basis

E—<Ham)m> Let B=BZ,so e.g. S-B=S_ |B|
VA

=<jm|mec(L+2S)-B|jm>

l rewrite (L+2S8)=(L+8)+S=J+S
eB
= m|J +S |jm
S -+ 5. m)
eB

[(jm|J_| jm)+(jm|S_| jm)]
| ] | |
| |

hm < jm| jm> \_/ need uncoupled basis

2m ¢
e




Goswami Table 12.1 gives some general C-G coefficients:

mo 4 -
pal (+2+m f+;1::f/’\\
2 20+1

J€+‘—m J€+1+m
Y/ 2 _ 2
2 20+1 20+1

Consider < Jm, ‘ S ‘ jmj>

when j=( + 7, this is

(++m 4+ — O+ +
{ 2£2+1 (+3l+ 2£2+1m<_%‘}“92‘{\/ 2zz+1m‘
|

2 +1 note these are m . NOT m_

l+1—
)+ Tﬂm\—?}

J

fo o=

2041 17 20+1
\_Y_}
im [+ m, |-
p(+) (-2

!



l+1+m 0+ +m -
=:V_§jlﬁ_h(+_)v 201 (ral+s V 2041 V 20+1 =(-4-4)

(+3+m [+ +m | (+3+m [{+7 +m
+ (34 )
20+1 20+1 2 2€+1 2€+1 22

0 0

_h_€+%+m (+3—m

2| 20+1 20+1

_h| _2m

2| 2041

hm. .

=—2L  forj=(+1

20+1 2

Similarly we get

= = forj={—7
+

Combine these with the <Jz> terms to get

eB him eBhm 1
E = hm +—21|= L1+ for j=/¢ +
Zeeman ~ 2M.C S20+1 2mc 2/ +1

N =



I. Hyperfine Structure
spin of nucleus generates a B field, e” responds to this B in addition to the one related to the

apparent linear motion of nucleus in €'s rest frame.

. _ Zeg,,
Let nuclear magnetic moment M | =
2M NC mass

Also let Mes = magnetic moment of electron's spin
H, has 3 "-M - B" terms:

yperfine
_TH 9 7 3 1 8
- {—m LM, + E[z.(Mes n)(M,-n)- M, - M, ]+ M, MS(R)

’ \ |\ J
- v !
_ ] "Fermi contact term"
B generated by e M, -[B generated by e spm]

as current loop in

p frame

Contact term corrects for the fact that p is not point like so its internal B differs from the

external one.

()=,



I. More on systems with identical particles

A) Exchange energy for interacting particles
Consider 2 indistinguishable particles 1 and 2 which can take positions o and 3

Their allowed 2-particle wavefunctions are

s 1
¥ _E[\Pamqjﬁ +‘Pﬁ<1)qja<z)}

1
E[\Pa(l)\yﬁ(z) - ‘Pﬂ(l)\Pa(z)]

(2)

LI;A

Let them interact
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A\_/ typically coulomb potential but could be anything
Treat it as a perturbation.

Then 1st order correction to system's energy is:

(considering all allowed combinations):
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can be interpreted classically as the coulomb
interaction between 2 charge densities
("electron clouds") distributed according to the
wavefunctions of the particles.

Gives a positive # since identical particles

(e.g. 2e's)

No classical interpretation. A purely
QM interference integral. Magnitude

also positive. To see this:
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call this V(1), the electrostatic potential observed at 1 due to charge distribution at 2

Slater App 19
By Green's Theorem, for any function V,
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Require equal integrands,

So p’(2) =%V2V(2)
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Consequently p(1) = 4—V2V (1)
T



Plug these into E:
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Integrate over all space. But divergence Theorem:
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So (W)=D+E

Since both D and E are definitely non-negative, antisymmetric states have lower energy than their

symmetric partners.



The joint probability for finding both particle's now
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Io not a simple product--so particles' motion is correlated.

B) Statistical repulsion of non-interacting particles
Consider 2 identical non-interacting particles in space. It is difficult to visualize their wavefunction in 3-D
as it has 3x2=6 dimensions, so limit each to 1-D. To keep the particles bounded (as they would be in an

atom) but to avoid explicit boundary conditions, place both on the same ring of circumference L.
Typical wavefunction (must fit on ring, single valued) is
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Symmetrical 2-particle wavefunction (allowing particles to have different momenta, p, =7k and p, =7k ):
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Letx = %(x1 + xz) centroid position
k=k +k hk=total momentum
Note: e” +e™” =2cos y
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P (1,2) =

Probability of finding one particle in dx, and other in dx , is
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Note implications:



1) when B(km —k, )(x1 —X, )J = g, Prob=0 for particles to be in dx, and dx,

2) if either k =k orx =x,, Prob=max
. tendancy of particles to coalesce when in symmetric state

Conversely for antisymmetric 2 particle states:
2 2 . :
“Pa‘ = Esm2 B(km —k )(xl — X, )] "statistical repulsion"

Note these particles are non-interacting (W=0)

C) Compare statistical repulsion to Pauli Principle
Let W(r)= spatial wavefunction for a single particle

Let = spinwavefunction for a single particle

LetU, =Wy

Then general antisymmetric wavefunction for 2 particles is
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Generalize for n particles in an antisymmetric state
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"Slater Determinant"

These are exact only for truly (non-physical) non-interacting particles, but for physical

particles they form an adequate zeroth-order wavefunction for perturbative calculations.

Pauli: " No 2 e's in an atom can have exactly the same state": no {cwo columns can be equal.,

If they are, det=0 9

.8 O,=a,

Statistical repulsion: If 2 electrons with same quantum numbers are at same point in space,

combined ¥ vanishes: No two rows can be equal



I. Helium atom: Nucleus +2 €'s

Plan: First predict ground state energy:
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1) Let H=
T N
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Ho pert
electrons each interact e's repel
only with the Z=2 nucleus each other

11) Correction #1: for charge screening of nucleus by each e from the point of view of other
e SoZ %2

effective

Use Variational Method

111) Correction #2: correlation effects, radial and angular, due to coulomb repulsion.

1v) Next predict excited states' energies

v) Correct for nucleus motion:

Carry out plan:
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Recall that the normalized ground state wavefunction for a single e in H is:

Let o=

32
‘P(r)=(a—} e (Goswami Equation 13.23)
T

(1) Get baseline wavefunction:

Guess unperturbed unsymmetrized 2-e wavefunction is:
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(2) Get baseline energy:
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when n=1, Z=1, " =-13.6 ¢V = "1 Rydberg"

Recall for hydrogen atom E =

Here everything is the same except:
()Z°=1"=2*=2" (helium atom)

(1) # electrons 1 — 2, so unperturbed equation is
|H, +H,, |¥=E¥
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E#1 + E#2 but each with Z= =2
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0) =8(—13.6 eV)=-108.8 eV




Add perturbation
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Call this V(r,)

Recall from E&M that a charge density "p" generates at distance r a potential V:
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So here V(r,) is the potential generated by a spherically symmetric charge distribution of density
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Subdivide it into shells:

A particular shell has radius r,, thickness dr,.

Here is p:

Want to evaluate V9r) at r=r,

dr.
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Again from E&M,

ifr, >r,, Vis same as if p were concentrated at origin
Then ‘171 —172‘ T,
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Plug this V into E®" :
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So E=E® + EW = —-108.8 eV + 34.0 eV=-74.8 eV

(compare measured value is -78.975 eV)

(iv) Now add screening
Each e™ does not have a "clear view" of the Z=2 nucleus--generally the presence of the other e~ screens
part of the nuclear charge.

Use Variational Method to find Z fective AS perturbation theory is at limit of applicability (forst-order

correction E” = 34 is same order of magnitude as



Recall the vVariational Method
This 1s what you use if you want to fint the ground state energy (Eg) but have a Hamiltonian H( # f(t))

which cannot be written as H  + AH |

i.e., this is what to use 1f H either

(1) does not have any term that looks like a familiar solved H , or

(2) has an H, but it is not "small" with respect to H

Procedure:

(1) Given H

(11) Pick any normalized W=¥(a,b,c....) some variable

(iii) Calculate (\P|H|¥)

(iv) Minimize <‘P ‘ H ‘ ‘P> with respect to its variables, for example require %<‘P ‘ H ‘ ‘P> =0,
solve for b, plug b back into <‘P‘H ‘ ‘P>

(v) the minimized <‘P ‘ H ‘ ‘P> you get 1s guaranteed to be > to the real Eg, so it is an upper limit on Eg

Carry out procedure on Helium ground state:



(1) identify H
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We will calculate <‘I"H “P> as 3 separate terms:
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(11) Choose Y. Recall it can be anything
Let W=O(1 )®(T,), where each @ _'s the solution of

Since this looks just like the hydrogen hamiltonian with Z — Z ., expect E=E(hydrogen with Z ):
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hydrogenic W¥'s, see
Goswami Eq 13.25
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Same answer for <H 2>
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Also from the perturbation calculation, <‘P‘T‘ ‘P> =— =—
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Justlet Z — Zeff

Then <H>—<H1>+<H2>+<‘ c ‘>_




