er of col-
les whose

e relative
ve speeds
zeds by a
'8 is given

(16.12)

s (0), and
is simply
ions:

(16.13)

s frequent
€ moving
are comt-
ur lanes.)
ith higher
particle 1
‘espective

(16.14)

velocities

i the fol-
: problem

(16.15)

we either
e relative

Kinetic theory and transport processes in gases

velocity u. The above equation shows that it is of the same form as that for
absolute velocities, but with the replacement either m — m/2 or v — u/+/2:

Ce—ﬂnwz/Z — Ce—ﬂmuz/4

This gives the origin of the factor +/2. In particular, we see from equation 16.6
that the average relative speed would be

7= iy = |0 (16.16)
mm

E Transport processes

A property that is unevenly distributed will become more uniform as the ran-
dom thermal motions of the molecules cause mixing.® The rate of this diffu-
sive transport depends on average molecular speeds and the mean free path.
The faster and the farther the molecules go, the more quickly the mixing
progresses.

We call Q the property’s density and definie the x direction as the direction
in which it varies, so that O = Q(x). Here we list three familiar examples of
these “transport processes,” along with the corresponding property whose density
varies.

° In molecular diffusion the density of molecules of type i varies with x:
9() = o). (16.17a)

o In thermal conduction the density of the thermal energy (i.e., the density of the parti-
cles times the average thermal energy of each) varies with x: '

o) = p [%kT(x)]. (16.17b)

° In viscous flow the momentum density of flow in the y direction varies with x:

Qx) = pmv,(x). (16.17¢)

E.1 One speed and one dimension

We begin by looking at the flux for the case where all particles move with the
same speed v in the x direction half going in the 4x direction and the other half'in
the —x direction. Once we get this result, we will then average it over all speeds
and all directions.

3 If some property of the gas varies from one region to the next, then the gas is not in equilibrium.
Nonetheless, we can safely use the tools of equilibrium thermodynamics as long as the relative
variations are small on the scale of the molecular separations (1078 to 10~° m in a typical gas).
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o) O + Ax)

v v

—y

Ax

~ 7

Figure 16,5 Suppose that all malecules are moving in the x direction with velocities
+v, and that we are microscopic observers standing between positions x and

X+ Ax, watching the molecules pass by. The density of the property is Q(x) to our
left and Q(x+ Ax) to our right. In each of these regions, only half the particles are
moving towards us, so they carry only half the property Qfrom that region. So the
flux from our leftis Q(x)v/2, and that from our right is — Qx+ Ax)v/2.

We will imagine that we are microscopic observers, midway between points x
andx + Ax, where the property’s densities are Q(x) and Q(x 4+ Ax), respectively
(Figure 16.5). In both regions only half of the particles are coming towards us
(the other half are going away from us) and so the flux (density times velocity)
past us of the property from each direction is given by

Q;x)v, flux from right = —

O + Ax) y

flux from left = + )

The sum of these two gives the net flux of this property past us:

net flux = —g [0 + Ax) — Q)] = —%%Ax.

But how do we decide upon the distance “Ax”? To answer this question we
observe that molecules entering a new region generally require more than one col-
lision each, on average, in order to either completely acquire or deliver the prop-
exty for that region. For this reason, the distance Ax would be some small number
n of mean free paths (Ax = nl), and the preceding equation would become

nlv dQ

tfux = ———. 16.18
net flux o ( )

E.2 All speeds and all directions

In a real gas the particles are moving with a distribution of speeds and in all
directions. The x-components of a particle’s mean free path and velocity are
given by

[, =1 cosf, v,=v cosb,
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where 6 is the angle that its direction of motion makes with the x-axis. So, for real
gases we need to replace the product /v in equation 16.18 by [,v, and average

over all speeds and all directions. For those particles coming from the left* we
would have

co ) 2 w/2
v = (v )ae = / P(v)dv—2~; / / sin®@ déde vI cos?0,
0 ¢=06=0

Where the first integral is over speed and the second and third are over angle.
Because [ is independent of both the speed and the angle (equation 16,13) and v
is independent of the angle, the right-hand side breaks into three factors:

0 2 w/2

UsVidave =1 /P(v)vdv %T— / f sinf dfdg cos?d = 7] [l} ,

3
0 $=006=0

where / and ¥ are given by equations 16.13 and 16.6, respectively. We put this
result for (/; vy )ave into equation 16.18 to get the “diffusion equation,”
net flux of O = J, :—’—ﬂ—fd—Q. (16.19)
6 dx

We note that the main features of this result are common sense. First, the minus
sign indicates that the net transport is in the direction opposite to the gradient.
Diffusion takes things from higher concentrations toward lower concentrations,
and not vice versa. Second, the factors that are the particles’ average speed and
the mean free path tell us that the faster and farther the particles move, the faster
diffusion progresses.

For each of the equations 16.17a—c, we group all constants together, and the
diffusion equation takes on the following form.

° Molecular diffusion

dp; , . [
Je = —Dd—i, whete the “diffusion constant” is D = % (16.20a)

e Thermal conduction

Z_—
Je=—-K where the “thermal conductivity” is K = % p—;—k. (16.20b)

dx”’
e Viscous flow

dv,

Jo = —Ua,

l__.
where the “coefficient of viscosity” is 7 = Zl—éz pm. (16.20¢)

In the last equation, the momentum flux is called the “stress” and it measures
the sideways “drag” or “viscous” force between neighboring layers of a fluid

4 For those coming from the right, the 8 integral goes from /2 to 7w, and we get the same answer,
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Figure 16.6 The two
columns of dots represent
two neighboring layers of
a fluid that are flowing in
the y direction at different
speeds. The broken-line
arrows indicate diffusion
of the molecules in the x
direction. Particles
diffusing to the left carry
more y momentum than
those diffusing to the
right. This mixing makes
the fluid on the left speed
up and that on the right
slow down. That is, the
diffusion causes each
layer to exert a viscous
drag on the other.
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(Figure 16.6). It has the units of pressure (force/area), but it differs in that the
force is parallel to the area rather than perpendicular to it.

E.3 Conserved properties

Generalizing from one to three dimensions, we can write all the above processes
as

J=-DV(Q  (diffusion equation), (16.21)

where O is the density of the diffusing property and D is the appropriate diffusion
constant, If this property is conserved (as are particles, energy, and momentum,
for example) then it must satisfy the continuity equation (equation 12.17)

% =-V.J (continuity equation),
which states that the change in concentration of the property inside any volume is
equal to the difference between the rate at which it enters and leaves (subsection
12E.5).
Taking the divergence of equation 16.21, using this expression for V - J in the
continuity equation above, and then dividing by D gives the generalized form of
the “heat equation” (equations 12.20 and 12.21):

V20 = lg

D ot (heat equation), (16.22)

whose solution was given in equation 12.23. Namely, if the property varies in the
x direction and its concentration at time ¢ = 0 is given by Q(x, f = 0) = f(x)
then its concentration at any later time is given by

O, 1) = /_ ” f(x/)< J%Ee~<x-X’>2/4D'>dx'. (16.23)

The first order “diffusion equation” 16.21 states that things diffuse from
higher to lower concentrations (J is backwards to the gradient), and the second
order “heat equation” 16.22 states that concentrations even out, decreasing near
local maxima (39 Q/8t < 0 when V2Q < 0) and increasing near local minima
(8Q/8t > 0 when V2Q > 0).

Summary of Sections B-E

Using the probability distribution for molecular speeds 16.5" we find the following.
The mean values of the speed and speed squared for a particle in a gas are

(equations 16.6, 16.7)
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~ The flux of particles moving in amny direction and the rate at which the gas particles

exit an opening of area 4 in their container (o is the particle density) are
(equations 16.9, 16.10)

L [F v _ N [T
YN m dt — VN 2mm

The collision frequency and the mean free path (o is the collisional cross section and
equals 47R?, where R is the effective molecular radius) are (equations 16.12, 16.13)

- 1 1
Ve = V2007, [=7{— )= .
¢ P ( Ve ) \/E pa
The average relative speed (77) and absolute speed () of a system of colliding
particles are related by (equation 16.16)

T=27.

If O is the density of some property of the gas that varies from one region to the
next, it will even out as the random thermal motions of the molecules cause mixing.
If we define the x direction to be the direction in which Q varies, then the net flux of
this property past a point is given by the diffusion equation (equation 16. 19)

nlvd (6]
=T
where the average speed and mean free path are given by equations 16.6 and 16.13,
respectively, and where # is a measure of the number of collisions required to
transfer the property. Applications include the following important processes
(equations 16.20a-c).

® Molecular diffusion
dp; nlv

Jy = —D?, where the diffusionconstant is D = -
X

© Thermal conduction

dT . niv v
Jo=—K~—, where the thermal conductivity is K = —p=k.
dx 62
® Viscous flow
dv,, niv
Je = ——17(1—\?, where the coefficient of viscosity is n = —6—~pm.

The generalization of the diffusion equation to all directions for the density O of any
property is (equation 16.21)

J=—-DVQ (diffusion equation),
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where D is the appropriate diffusion constant. When combined with the continuity
equation for conserved properties, it gives (equation 16.23)

1
ViQ = D % (heat equation),

which we have encountered before, at the end of Chapter 12.

Problems

For many of these problems, it will be helpful to consult the table of standard
integrals in Appendix E.

Section A

1.

The probability that the x-component of velocity of a molecule lies in a certain
range is 0.3, that the y-component lies in a certain range is 0.2, and that it
the z-component lies in a certain range is 0.1. What is the probability that all
three components lie in the prescribed ranges?

. For motion in one dimension and in terms of m, k, T, for what value of
the momentum will the probability be half as large as the probability for a
molecule to stand still?

. Suppose that you invest half of your money in each of two businesses. Each
business has a 10% chance of failing. What is the probability that (a) both
will fail, (b) neither will fail?

. Starting with P(p)d®p = (52-)*?e~#7" 2@ p, derive P(v)d*v by replacing

2mm
p with mv.

. The probability that the x-component of a molecule’s velocity lies in the

range dv, is given by equation 16.3’. Check that the normalization is correct
by integrating this probability distribution over all v,.

. According to equation 16.3, the distribution in v, for particles in a gas is

a Gaussian distribution. (See Section 3B.) The molecular mass is m and the

temperature is 7.

(a) What is the standard deviation for the x-velocities of these particles?

(b) the coefficient for a Gaussian distribution is 1/+/270. Is the coefficient
obtained in this way the same as that in equation 16.3'?

(c) Sincethe distributionis centered around v, = 0, the square of the standard

deviation is equal to the mean value of v2. What is the mean value of
(1/2)mv2?

. Check the normalization of the expression 16.4' for P(v)dv, by expressing

d3v in spherical coordinates and then integrating over all values of these
coordinates. '
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