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III.  Fermions and bosons
It is a fact of nature that particles come in two varieties:
fermions - only 1 is permitted per state
bosons - the number per state is unrestricted, but integer

These requirements correspond to different classes of solutions to the 
Dirac Equation (the relativistic version of the Schroedinger Equation, including
requirements on Lorentz covariance and causality).

We now find n  for each of these two varieties.
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Finding n  for fermions: the sum can run only over the range 0 to 1.

e−nx
n=0

1

∑ = 1+ e− x

Thus, nf = − ∂
∂x

ln e−nx
n=0

1

∑⎛⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = − ∂

∂x
ln 1+ e− x( )

= − 1
1+ e− x

⋅ −e− x( ) = e− x

1+ e− x

To put this into an alternative form, multiply by e
x

ex
:

nf =
1

ex +1

                             Remember x = β ε s − µ( ) = ε s − µ
kT

,  so,

nf =
1

e
(εs−µ )

kT +1
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Finding n  for bosons: the sum must run over the range 0 to infinity.

e−nx
n=0

∞

∑ = 1
1− e− x

               (See Stowe Appendix 21A on how to compute this sum.)

So nb = − ∂
∂x

ln e−nx
n=0

∞

∑⎛⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = − ∂

∂x
ln 1

1− e− x
⎛
⎝⎜

⎞
⎠⎟ = − ∂

∂x
ln1− ln 1− e− x( )⎡⎣ ⎤⎦

= ∂
∂x

ln 1− e− x( ) = 1
1− e− x

⋅ e− x( ) = e− x

1− e− x

To put this into an alternative form, multiply by e
x

ex
:

nb =
1

ex −1
= 1
e

(εs−µ )
kT −1

 A minus sign, where nf  has a plus sign. 
 This seemingly small difference will have amazing consequences.

Notice that n  does not tell us what states exist, nor which are accessible.
It only gives the average number of particles in a state, if that state exists.
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What the n  distributions look like:

nf

nb

μ	

μ	

higher	temperatures	
	
lower	temperatures	
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I.  The relationship between classical and quantum statistics
II. Bosons aggregate, fermions disperse
III. In what cases do classical statistics apply?

Please read Stowe chapter 26.
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I.  The relationship between classical and quantum statistics
Recall occupation numbers, the mean number of particles in a state:

nf =
1

e
(εs−µ )

kT +1
           fermions: particles that constitute matter (e.g., electrons, quarks)

nb =
1

e
(εs−µ )

kT −1
           bosons: particles that transmit forces (e.g., photons)

Quantum mechanical effects become evident differently for fermions and bosons.
(1) How QM effects make fermion statistics different from classical statistics:
When >1 fermion is present, the Pauli Exclusion Principle forces fermions into higher
states than would be required for classical particles.
Consider 4 energy levels, 3 of which have 1 particle in each:

empty( )
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Add a new, lower energy, particle "      " to the system.
If they are classical (distinguishable) particles, it can settle into the lowest level:

If they are indistinguishable fermions, the Pauli principle forces it into an unoccupied level:
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So we expect that nf < nclassical  and Ef > Eclassical .

But if the particle we wish to add to the system has an energy that is much higher 
than the environment (E >> kT ), it will enter a high level regardless of whether it obeys
classical or Fermi statistics.  Thus,
for E >> kT , we expect that: nf ≈ nclassical

To see this mathematically, note:

nf =
1

e
(εs−µ )

kT +1
              When ε s >> kT ,  e

(εs−µ )
kT >>1,  so we can neglect the "+1" in the denominator.

Then,

nf ⇒
1

e
(εs−µ )

kT
= "nMB ",  the Maxwell-Boltzmann distribution

We can also call this "nclassical ",  the statistical distribution for classical particles.
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Compare the Fermi and
classical ("M-B,"
(Maxwell-Boltzmann)
distributions:

As intuited, nclassical > nf
until E >> kT .

When ε s << µ,  e εs -µ( )/kT   is very small,                     When ε s >> µ,  e εs -µ( )/kT >>1 

so 1
e εs−µ( )/kT +1

≈ 1
0 +1

= 1   for fermions                  so 1
e εs−µ( )/kT +1

≈ 1
e εs−µ( )/kT  for fermions

But:
1

e εs−µ( )/kT → 1
0
→∞  for classical (M-B)                    So in this case, the fermion and M-B 

particles.                                                                   distributions converge. 

ε s − µ( )
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(2)  How QM effects make boson statistics different from classical statistics:
Recall bosons are like classical particles in that more than one can be present in a state.
They are different because once the particles have selected their states, permutations
among (identical) bosons don't result in new states, but permutations among
(distinguishable, non-identical) classical particles do.

Example:
Classical                                 Bosons

a b

c

c

c

a

a
b

b

Levels

Particles.



336	

Thus:  3 states if classical, 1 state if bosons.
So if we were using the Maxwell-Boltzmann (classical) distribution as an
approximation to the boson distribution, we should divide the resulting # states by 3.
Because the partition function depends upon number of states, 

(recall Z ≡ e−βEs
# states
∑ ) we should correct Z  by a factor of 3, also.

Recall (lecture slide 286) we found that

Zindistinguishable
particles

= 1
N!
Zdistinguishable
particles

N

Note "distinguishable particles" are the classical, Maxwell-Boltzmann case.
Consider the case where the "indistinguishable particles" are bosons with 

> 1 boson per level.  In this example, the 1
N!

 correction will be too severe.

We see that the true correction would be 1
3

, but 1
N!

= 1
3!
= 1

6
.
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We see that: when there is high probability of multiple occupancy of states (these are

the low energy states), then the 1
N!

 classical correction is too severe for bosons.

The  1
N!

 classical factor formally applies only if there is no multiple occupancy of states.

This is the case for very high energies.

Thus:
At high energies, the classical and
boson distributions converge.

At low energies, where multiple
particles are more likely to occupy
the same level,
nMaxwell−Boltzmann

(classical )
< nboson  due to the

over-correction by the 1
N!

 factor.
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II.   Bosons aggregate, fermions disperse
This is a direct consequence of the statistical distributions.

Recall Prob
observing a particular property
or configuration

⎛
⎝⎜

⎞
⎠⎟
= # states with that property

total # states

(Recall the example table on lecture slide 76.)

Consider 2 levels and 2 particles:

                                               Classical (distinguishable)           Bosons                  Fermions
Possible arrangements

Ωtot                                             4                                                 3                              1

# double occupancy states Ω0     2                                                 2                              0 

Prob(double occupancy)           2
4
= 0.5                                      2

3
= 0.67                  0

1
= 0

 

a
ab
b

ab	
ab	
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Define "clustering": increased probability of double occupancy.
Then we see that Pcluster (bosons) > Pcluster (classical) > Pcluster ( fermions)
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III.  In what cases do classical statistics apply?
Classical stats approximate to both the Bose-Einstein and the Fermi-Dirac stats, when
# states available to a particle

# particles
>>1.

The # states may be available because
i) the particle's energy is high, or
ii) the particle density is low.

Consider a particle in volumes     Vr = R
3  and

                                                    Vp = prms
3 ≡ p 3

# states available
#  particles 

= #states per particle ≈
VrVp

h3 =
R3 p 3

h3

So classical stats is applicable when R
3 p 3

h3 >>1

                                                         R p >> h                    "Eq 1"
We now work out what conditions this implies for volume V, number N, temperature T.
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Recall the Equipartition Theorem:  for free, non-relativistic particles,

KE = 3× 1
2
kT              (3= # dof, from px , py , pz )

1
2m

p2 = 3
2
kT

p2 = 3mkT

prms = p = p2( )1
2

= 3mkT( )1
2

Also, R3 = volume per particle = V
N

,

so R = V
N

⎛
⎝⎜

⎞
⎠⎟

1
3

Plug these into Eq 1:

Classical stats are applicable when V
N

⎛
⎝⎜

⎞
⎠⎟

1
3

⋅ 3mkT( )1
2 >> h.
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I.  Introduction to blackbody radiation
II. Quantum particle distributions
III. Photon distribution
IV. The Planck spectral distribution for a black body
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I.  Introduction to blackbody radiation

We are speaking here about a "quantum gas."
"Quantum" because the average particle's energy is so low that Fermi-Dirac or
Bose-Einstein statistics must be used.
"Gas" to describe any group of particles whose states are so closely spaced that 
they are approximately continuous.  The close spacing comes from the usual
gas properties of low density and weak interaction.

Examples of quantum gases:
i)  electrons in a conductor  (Fermi-Dirac)
ii) liquid He atoms  (Bose-Einstein)
iii) photons in an oven (Bose-Einstein)
iv) phonons: vibrations in a solid lattice (Bose-Einstein) 
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Why this is interesting:
Consider (iii), the photons in an oven.  The observation of the oven's radiation
frequency spectrum led Planck to hypothesize the quantization of energy (i.e. the
existence of photons).  That frequency spectrum looks like this:

Our goal: understand energy density dE
dVol

≡  du = !
π 2c3

⎛
⎝⎜

⎞
⎠⎟
ω 3dω
eβ!ω −1

,  where ω = frequency.
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Steps needed:
i)  Find number dN  of particles per available phase space.
              dN = # quantum states( )× mean # particles per state( )
ii)  Consider photons: spin 1, relativistic
iii)  Find dE = energy per quantum state.
             dE = dN × ε = #photons( )× energy per photon( )

iv)  Compute du = energy density = dE
dVol
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II.  Quantum particle distributions
Goal #1: find dN  = # particles in the quantum state specified by energy ε  in range dε .
dN = #states in range dε[ ]   × typical # of particles per state[ ]  

      density of states( )× dε( )             occupation number
                 g ε( )× dε                                 n ε( )

Recall we showed (lecture slide 45) that g ε( )dε = d
3rd 3p
h3 .

This is the number of states of a spinless particle.
Spin is a separate degree of freedom that exists in a space other than physical
coordinate space.

Recall that if a system has n dof's which each make available Ωi  states, then

the total #states Ω0 = Ωi
i=1

n

∏ .

This Ω0  is g ε( )dε .
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For simplicity of expression, combine all of the r, p( )  dof's into one group, and
all spin dof's into another group, so:
g ε( )dε =Ω0 =Ωr ,p ⋅Ωspin

                     = d
3rd 3p
h3 ⋅Ωspin                   (Stowe calls Ωspin  "λ")

What formula to use for Ωspin :
Massive particles with spin j  have Ωspin = 2 j +1
Massless particles with spin j  have Ωspin = 2 j

Examples:
Particle       Massive?       Spin      Ωspin

photon        no                  1           2
electron       yes                1

2           2
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Rewrite, letting Ωspin ≡ λ.

If the particles are in a field-free region, g ε( )dε  does not depend on 

position, so integrate over d3r  to obtain volume V.
Then:

g ε( )dε = λVd 3p
h3 .

d 3p = p2dpsinθdθdφ.
Again for a field-free region, we can integrate over θ ,φ( )  to get 4π .

g ε( )dε = λV 4π p2dp
h3 .

Recall dN = g ε( )dε ⋅n ε( ),  so

dN = λV 4π p2dp
h3 ⋅n ε( )

This is the number of particles in the phase space interval dp, centered on energy ε ,
for the arbitrary number of spin degrees of freedom = λ  and physical volume V.



349	

III. Photon distribution
Begin with the number of particles:

dN = λV 4π p2dp
h3 ⋅n ε( )                                        "Eq 1"

Consider photons:

1) they are bosons, so n ε( ) = 1
eβ ε−µ( ) −1

2) they don't interact with each other, so µ = 0.
3) Their λ =Ωspin = 2
4) they are relativistic, so their ε = pc.

Thus p = ε
c

,  so p2 = 1
c2 ε

2  and dp = 1
c
dε .

Plug these into Eq 1 to get:

dNphotons =
2 ⋅V ⋅4π

h3 ⋅ ε
2

c2 ⋅
dε
c
⋅ 1
eβ ε−0( ) −1

= 8πV
h3c3 ε

2dε ⋅ 1
eβε −1
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IV.  The Planck spectral distribution for a black body

dNphotons =
8πV
h3c3 ε

2dε ⋅ 1
eβε −1

 

What this means:  The # photons present is related to the energy per photon.
If photons are in equilibrium with their environment, their average energy is the
same as the energy of the environment, which is proportional to the temperature.
Thus: the # photons present is related to the temperature of their environment.
Now find the energy E  of the photon "gas".
Let ε = energy per photon
dE = dN ⋅ε

     = 8πV
h3c3 ε

2dε ⋅ 1
eβε −1

⋅ε

    = 8πV
h3c3 ε

3dε ⋅ 1
eβε −1

Take out the volume dependence by computing energy per volume:

photon energy density du = dE
dV

= 8π
h3c3 ε

3dε ⋅ 1
eβε −1
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Now find the energy density per range dε , centered on ε:
du
dε

= 8π
h3c3 ε

3 ⋅ 1
eβε −1

                               "Eq 1"

Remember β ≡ 1
kT

 so this distribution is temperature-dependent:
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It is a fact about nature that photon energy ε , which is the same as 
electromagnetic wave energy, is related to the wave frequency ω  through
ε = ω .
This is surprising because matter waves (i.e., water, sound, and so forth) do NOT
have this relationship.  For them, ε ∝ amplitude, not frequency.

Since ε = ω = h
2π

ω ,

dε = h
2π

dω

Plug these into du:

du = 8π
h3c3 ε

3dε ⋅ 1
eβε −1

= 8π
h3c3 ⋅

h3ω 3

8π 3 ⋅ hdω
2π

⋅ 1
eβω −1

Then
du
dω

= ω
3

π 2c3 ⋅
1

eβω −1
                                                          

This is the Planck law for the spectral distribution of photons in a thermal cavity.
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To obtain an alternative form of the graph:

Note that since β= 1
kT

,  βkT = 1.   Cube this to get

β 3k 3T 3 = 1.
Multiply Eq 1 by "1" on the LHS and β 3k 3T 3  on the RHS.

1× du
dε

= 8π
h3c3 ε

3 ⋅ 1
eβε −1

× β 3k 3T 3

du
dε

= 8π k 3

h3c3

⎛
⎝⎜

⎞
⎠⎟
⋅
T 3 βε( )3

eβε −1

 

The horizontal axis βε= ω
kT

 is the dimensionless ratio

of photon energy to thermal energy, i.e. the ratio:

energy of photons emitted by hot container walls
KE of container wall atoms that emit the photons

⎡
⎣⎢

⎤
⎦⎥
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Call ω du
dε

 is max⎛
⎝⎜

⎞
⎠⎟ ≡
ω

Call T du
dε

 is max⎛
⎝⎜

⎞
⎠⎟ ≡
T

Then 
ω
T
= constant = 2.82              "Wien's displacement law"

This means: if we increase T ,  T  increases and ω  follows linearly.
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I.   The energy density of a photon gas
II.  The Stefan-Boltzmann Law
III. Reflection, absorption, and emission by thermal bodies
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I.  The energy density of a photon gas

Recall du
dε

= 8π
h3c3 ε

3 ⋅ 1
eβε −1

 

This is the energy density per photon in the energy range dε , centered on energy ε .

We now calculate u = du,∫  the total energy of the photons of all energies, for a

system at temperature T= 1
βk

.

u = du∫ = 8π
h3c3

ε 3dε
eβε −10

∞

∫

                                               Let x = βε ,  so ε 3 = x3

β 3 = k
3T 3x3  and dε = dx

β
= kTdx

u =
8π kT( )4

h3c3
x3dx
ex −10

∞

∫ =
8π kT( )4

h3c3 ⋅ π
4

15
= 8π 5k 4

15h3c3

⎛
⎝⎜

⎞
⎠⎟
T 4

u = constant ⋅T 4           This u  is the energy density of the photon gas.
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Example application:

Suppose the sun has radius r = 8 ×108m.  The sun's volume V = 4
3
πr3.

The sun's average temperature = 3×106K .
If all of the sun's energy is stored as a photon gas in its interior, how much
energy is in the sun?

u = energy
volume

= 8π 5k 4

15h3c3

⎛
⎝⎜

⎞
⎠⎟
T 4

So energy = u ⋅Volume = 8π 5k 4

15h3c3

⎛
⎝⎜

⎞
⎠⎟
T 4V

=
8π 5 ⋅ 1.381×10−23 J

K
⎛
⎝⎜

⎞
⎠⎟

4

⋅ 3×106K( )4
⋅ 4

3
π ⋅ 8 ×108m( )3

15 ⋅ 6.63×10−34 Js( )3
3×108 m

s
⎛
⎝⎜

⎞
⎠⎟

3

= 8.8 ×1037 J
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The relation, u ∝T 4 ,  is a consequence of the three-dimensionality of space.
We now show this:
At temperature T , a photon has energy of the order kT :  ε ≈ kT .  (k  = Boltzmann's const)
But from relativity:  ε = pc
and from quantum mechanics, p = K .                  (this K  is wave number)
So ε = Kc.
Thus Kc = kT

So a typical photon at temperature T has wave number K = kT
c

.

Recall # states = density of states( )× volume of phase space being examined( )

So # photons = g ε( )× VrVp

h3

⎛
⎝⎜

⎞
⎠⎟

But this Vp ∝VK

So # photons ∝VK ∝ K 3 = kT
c

⎛
⎝⎜

⎞
⎠⎟

3

Photon energy density u = # photons( )× typical photon energy( )

= kT
c

⎛
⎝⎜

⎞
⎠⎟

3

× kT = constant ⋅T 4
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II.  The Stefan-Boltzmann Law
Recall the flux of anything = rate of incidence upon a unit area.
Recall for general gases (Chapter 19),  fx = ρvx .
Write this for the z-direction as  fz = ρvz .

Our goal: find the energy flux radiated by a body at temperature T.
Suppose the unit area is oriented in the x-y plane, so the flux will be in ẑ.

unit	area	above	

the	radiator	
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We want to find  fz .  We know:
ρ = energy density approaching the unit area
u = total energy density

1
2  of the photons go the wrong way (-ẑ) so only u

2
 contributes to the  fz .

Thus ρ = u
2

.

To find vz :
All the photons travel at speed v = c, but their vz  component depends 
on angle θ  of emission with respect to the z-axis.

θ	 photon	direcAon	
z-axis	

vz = ccosθ
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To find vz ,  average over 0 ≤φ ≤ 2π  and 0 ≤θ ≤ π
2

(all directions that contribute to upward flux).

vz = c cosθ ⋅sinθ dθ dφ
θ ,φ
∫∫ = c

2
.

So flux= density( )× average velocity( ) = u
2
⋅ c
2
= uc

4

Recall u = 8π 5k 4

15h3c3

⎛
⎝⎜

⎞
⎠⎟
T 4

So flux = 1
4
⋅ 8π 5k 4

15h3c3

⎛
⎝⎜

⎞
⎠⎟
T 4 ⋅c

            = 2π 5k 4

15h3c2

⎛
⎝⎜

⎞
⎠⎟
T 4

                                        Call this σ , the Stefan-Boltzmann constant
Then flux =σT 4 .               This is the Stefan-Boltzmann Law.



362	

III.  Reflection, absorption, and emission by thermal bodies

A: some facts about photons that are incident upon a thermal body:

1) For any interaction of photons and a body, energy is conserved.
So a photon cannot just go out of existence without its energy being accounted for.
If I0 = intensity of incident photons
   Ir = intensity of reflected photons
   Ia = intensity of absorbed photons
Then I0 = Ir + Ia .

2) Whether they are absorbed or reflected depends upon the match between 
photon wavelength and body reflectivity.
(i)  A body that appears as color X reflects wavelength X and absorbs all else.
(ii) A "blackbody" reflects no photons, absorbs all.
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1.0
Ir
I0

1.0
Ir
I0

1.0
Ir
I0

1.0
Ir
I0

1.0
Ir
I0

1.0
Ia
I0

1.0
Ia
I0

1.0
Ia
I0

1.0
Ia
I0

1.0
Ia
I0

(green)       ω

(green)       ω

(green)       ω

(green)       ω

(green)       ω (green)       ω

(green)       ω

(green)       ω

(green)       ω

(green)       ω

white	light,	green	body	

white	light,	black	body	

green	light,	green	body	

green	light,	red	body	

green	light,	black	body	

At every wavelength present, Ir + Ia = I0,  i.e., Ir
I0

+ Ia
I0

= 1.    Examples:
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B: Facts about photon emission from bodies.
1)  Let Ie = intensity of light emitted by a body.  If the body is in equilibrium with
the photon gas (i.e. radiation field), then it can not undergo net gain or loss of energy,
so Ie = Ia .
For example, "Ie = Ia " means that the areas under these 2 curves must be the same:

Could it happen that the curves might have different shapes but the same area?
No, because this would imply that different frequencies are emitted than absorbed, which
would not conserve energy.  
Thus: Ie = Ia  at every frequency.  This is the Principle of Detailed Balance.

(green)       ω

1.0
Ia
I0

(green)       ω

1.0
Ie
I0



365	

2) Recall that a blackbody absorbs all frequencies and emits all frequencies.
Consider a blackbody in equilibrium with radiation at temperature T.
The way to ensure equilibrium is to enclose both the body and the radiation 
in some vessel at temperature T.  The radiation in the enclosure will
have the spectrum

because this is characteristic of any body at T.
The enclosed body is bombarded by photons with this spectrum, and
since it is black, it absorbs them all with this spectrum.  Then by the
Principle of Detailed Balance, it must emit this spectrum as well.
So this spectrum is called the blackbody radiation curve.


