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I.  Partition functions of systems that have distinguishable subsystems
Consider system S that has subsystems A and B
System S is in state s
System A is in state a
System B is in state b

The partition function for S is Z = e−βEs
s
∑

                                                  But energy is additive: Es = Ea + Eb

                                                     and 
s
∑ =

a,b
∑

So Z = e−β Ea+Eb( )

b
∑

a
∑

= e−βEae−βEb
b
∑

a
∑

= e−βEa
a
∑ e−βEb

b
∑

= Za ⋅Zb
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This can be generalized to >2 subsystems:

Zs = Zi    if the subsystems are distinguishable.
i
∏

How did the distinguishability enter?  When we named them "A" and B."
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II.  Partition functions of systems that have indistinguishable subsystems
Consider 3 energy levels:

E3

E2

E1

and three particles named A, B, and C.

How many ways are there to arrange the particles in the states, with no more
than 1 particle per state?       Six.

Arrangement #:     1      2       3      4     5      6                            
Energy Level
E3                         C     B       C      A     B    A
E2                         B     C       A      C     A    B
E1                         A     A       B      B     C    C
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IF the 3 particles are distinguishable (e.g., A = electron, B = proton, C = neutron),
then each of the 6 arrangements may correspond to a different energy of the
combined system.  In that case 6 arrangments ⇒ 6 energies.

Then: 
s=1

6

∑ ⇒
c=1 
(state of C)

3

∑
b=1 
(state of B)

3

∑
a=1 
(state of A)

3

∑  

(with the constraint that no 2 particles can be in the same state)

IF the particles are indistinguishable (e.g., replace A, B, and C all with "D"),
then there is only 1 arrangement (all 6 arrangements become equivalent)
so there is only 1 system energy.

Then 
s=1
(no sum 
actually 
needed)

1

∑ ≠
c=1 
(state of C)

3

∑
b=1 
(state of B)

3

∑
a  =1
(state of A)

3

∑
  

 

                        because doing all these sums would overcount the number 
                        of distinct system energies.
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Now suppose there are 2 levels and 2 particles.

Arrangement#       1          2
E2                         B          A
E1                          A         B

We see that the # of arrangements = # of distinct system energies 
= 2 if the particles are distinguishable
and  =1 if the particles are indistinguishable

Notice: 6=3!
            2=2!
And in general, # arrangements (=# distinct system energies)
= #  particles( )!= N!  if the particles are distinguishable
and  =1  if the particles are indistinguishable.
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Now recall the partition function for a system S that has subsystems A, B, C, ....

This could be an atom.             These could be the electrons, which are indistinguishable.
Suppose it has energy E s .         Name their energies Ea ,  Eb ,  Ec, ,...

The definition of Zs  is e−βEs = e−β Ea+Eb+Ec+...( )

s
∑

s
∑

This sum over s is NOT the same as a sum over (a,  b,  c....) if A, B, C,... are indistinguishable.

If the subsystems are indistinguishable, 
s
∑ = 1

N! a,b,c...
∑  

So for S, which has N indistinguishable subsystems,

Zs = e−βEs
s
∑ ⇒ 1

N!
e−βEa

a
∑ e−βEb ...

b
∑ e−βEn

n
∑ = 1

N!
ZA ⋅ZB ⋅...⋅ZN

If ZA = ZB = ...= ZN ,  call them all "".

Then Zs =
1
N!
N

This is the partition function if system S has N indistinguishable subsystems.  We will
use this in Chapter 24.
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III.  Example calculation of a partition function
Goal: find Z  for a gas of N  diatomic molecules in a field-free region
Interpret this as:
A system "s": the gas
with N  identical subsystems: the molecules

This should take the form Zs =
1
N!
N .

We need to find , the partition function of one diatomic molecule.

 = e−βEs
s
∑

Sum over all          Es  is the sum of the energies stored in all dof's:
energy levels         Es = Etranslation

of molecule
+ Erotation

of molecule
+ Evibration

of molecule
+ Eexcitation of

molecule's electrons
+ Eexcitation of

molecule's nucleons

 
For now, ignore Eexcitation of

molecule's electrons
+ Eexcitation of

molecule's nucleons
,  as they only contribute for T >>1000K .
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Then e−βEs
s
∑ = e−β Et+Er+Ev( )

vibration
∑

rotation
∑

translation
∑ =  t r v

To find  t = e−βEt
translation
∑ :

                                                Plug in Et =
p2

2m

                                               Make the approximation: 
translation
∑ ⇒ d 3pd 3r

h3
r ,p
∫∫

Then   t =
1
h3 d 3r∫∫ d 3pe

− β
2m

p2

  

Call d 3r∫ = "V "

Look this integral up in Stowe Equation 18.A.2.
Result:

 t =
V
h3 ⋅

2mπ
β

⎛
⎝⎜

⎞
⎠⎟

3
2

=
V ⋅ 2mπ kT( )3

2

h3 .

Note:  t ∝T
3

2 = T  raised to the power (# translational dof / 2)
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To find  r = e−βEr
rotation
∑ :

                                  Plug in Er =
L2

2I
.  This is true for a dumbbell (diatomic) shape.

Recall from QM that the eigenvalues of the L2  operator are  +1( )2,  ∈ 0,1,2...{ }.
But also: each  level has sublevels reflecting the eigenvalues of the Lz  operator.
These are m, m∈ 0,±1,±2,...,±{ }.
So each  level has 2+1 m-type sublevels.
Or: each angular momentum L state has
2+1 allowed L z  states.

When we write 
rotation
∑  we mean:

all levels that
can contribute
to rotational
energy

∑ ⇒ 2+1( )

∑

So  r = 2+1( )e−
β2

2 I
 +1( )


∑ = 2+1( )e−

2

2kTI
 +1( )


∑

 n                                                    m
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Notice: these levels are discrete, so the sum is needed.  But when
temperature T is high ⇒ energy E is high ⇒ high  states are populated
⇒ many m states are populated.

The m states are very close together, separated by 1
20000

 of the energy

splitting between the principal (n) levels.

So for high temperature T, it is reasonable to approximate 

∑ as d.∫

Here "high T" means T >> Texcitation :

                                kT >>
2 +1( )

2I
.

So  r
(high  T) ≈ d

0

∞

∫ 2+1( )e−
β2

2 I
 +1( )

                           To solve this integral, let x =  +1( ) = 2 + ,  so dx = 2+1( )d

 r
(high  T) ≈ dxe

−β
2

2 I
x

0

∞

∫ = 2I
β2 = 2IkT

2

Notice this  r ∝T
2

2  = T raised to the power # rotational dof / 2( ).
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To find  v = e−βEv
vibration
∑ :

In QM, the paradigm for vibrational problems is the Simple Harmonic Oscillator.

For this, Ev = n + 1
2

⎛
⎝⎜

⎞
⎠⎟ ω 0,     n ∈ 0,1,2,....{ }

So 
vibration
∑ ⇒

n
∑

Then  v = e
−β n+1

2
⎛
⎝⎜

⎞
⎠⎟ω0

n
∑ = e

−β
2
ω0

 e−nβω0

n
∑

We showed (lecture slide 278) that we can ignore energy offsets in the partition function.
So  v = e−nβω0

n
∑

Do the sum a la Appendix 21A:

 v =
1

1− e−βω0
= 1

1− e
−ω0
kT

If T is large (i.e., kT >> ω 0 ),  we can expand the exponent and truncate its series:
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 v
(high  T) ≈ 1

1− 1− ω 0

kT
+O 1

T 2
⎛
⎝⎜

⎞
⎠⎟ + ...

  
 

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⇒ 1
ω 0

kT

= kT
ω 0

                                          neglect

Notice this  v ∝T
2

2 = T  raised to the power # vibrational dof / 2( ).

Put these all together:

Ztot =
1
N!
 t r v( )N = 1

N!
V ⋅ 2mπ kT( )3

2

h3 ⋅ 2+1( )e−
2

2kTI
 +1( )


∑ ⋅ 1

1− e
−ω0
kT

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

N

...and at high temperature T, this approximates to:
1
N!

const1( )T 3
2 ⋅ const2( )T 2

2 ⋅ const3( )T 2
2⎡⎣ ⎤⎦

N
= (constant)

N!
⋅ T

υ
2( )N

where υ = #dof /molecule.
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Recall  = # dof of the whole gas = Nυ.

So Ztot =
constant( )
N!

⋅T 
2  for an ideal diatomic gas at high temperature.

We could modify this formula for gases with # atoms ≠ 2 or temperatures
below Texcitation ,  for specific dof's.
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I.  Phases and phase changes
II. Phase stability

Please read Stowe chapter 24.
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I.  Phases and phase changes
Define: 
Phase -- a single, spatially homogeneous state of aggregation;
this word characterizes the nature of a substance in a space of 2 independent
variables, often pressure,Temperature( ).
Phase diagram -- a graph depicting the range of the 2 independent variables
over which various phases are stable.  Along the lines, the 2 phases are in diffusive
equilibrium.  Example:
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Define:
Phase transition -- An onset of collective behavior  among the constituents of a substance.
i Typically the response to an attractive force (e.g., if water freezes, it is because the 
temperature is low enough to allow electrostatic attraction to overcome thermal motion)
i Can be induced  by a change in pressure or temperature.
i Is characterized  by a discontinuous change in some property.  Could be discontinuous
in the 1st or 2nd derivative.

Examples:

      Discontinuous in the 1st derivative:
            Liquid-gas transition: discontinuous change in density
            Liquid-superfluid transition: discontinuous in viscosity
            Gas-plasma transition: discontinuous in conductivity

     Discontinuous in the 2nd derivative:
            Normal conductor - superconductor transition: discontinuous in conductivity
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A graph that illustrates phase transitions:

Some property, for 
example volume 

some property, for 
example pressure At these points, the second derivative is 

undefined, because the slope is 
discontinuous.  This is a second order 
phase transition. 

Here the first derivative is 
undefined.  This is a first 
order phase transition. 

Define: critical point -- Beyond the critical point, the liquid and gas phases are
indistinguishable, because the thermal motion of the fluid is so high that although
it can be compressed to a  density typical of a liquid, it does not condense there.
Condense -- exhibit collective behavior that results in a discontinuous volume change.
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II.  Phase stability
We study phase stability to understand why phase changes occur at the 
particular (p,T ) points where they do.
Recall the Gibbs Free Energy.  In differential form,
dG = −SdT +Vdp + µdN .
                                        Use the First Law: dE = TdS - pdV + µdN ,
                                        to replace µdN  with dE −TdS + pdV
Then,
dG = −SdT +Vdp + dE −TdS + pdV( )
= dE − SdT +TdS( ) + pdV +Vdp( )
= dE − d ST( ) + d pV( )

Infer:
G = E − ST + pV

Our goal: show that stable equilibrium occurs for a system in which G is a minimum.
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Recall (lecture slide 201) that if a system "Δ" is in equilibrium with a reservoir "R",
the probability Ps  of finding the system to be in state "s" is proportional to ΩR ,
the number of states of the reservoir that permit Δ to be in state s :
Ps ∝ΩR

                  But the reservoir's entropy, SR = k lnΩR ,

                  so ΩR = e
SR

k

Ps ∝ e
SR

k

                  Notice Stot = SΔ + SR ,
                  so SR = Stot − SΔ
Ps ∝ e

Stot
k .
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Consider a nondiffusive ΔN = 0( )  interaction between Δ and R.
Suppose Δ absorbs some heat Q from R to make its phase transition.
R's temperature T0  and pressure p0  do not change perceptibly, so

ΔStot = ΔSΔ + ΔSR = ΔSΔ −
Q
T0

        = 1
T0

T0ΔSΔ −Q[ ]

        = 1
T0

T0ΔSΔ − ΔEΔ + p0ΔVΔ( )⎡⎣ ⎤⎦

       = 1
T0

Δ T0SΔ − EΔ − p0VΔ( )⎡⎣ ⎤⎦

       = 1
T0

−ΔGΔ( )
                                Suppose that the "Δ-R system" transitions from 
                                equilibrium to a combined state in which Δ is in state s.
                                Then:  ΔStot = Stot

(Δ  in s)
− Stot

equil

                                and ΔGΔ = GΔ  in s −Gequil
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ΔStot = Stot − Stot
equil

= 1
T0

Gequil −Gs( )

Therefore Stot =
1
T0

Gequil + Stot
equil  

− Gs

T0

                         "some constant"

So Ps ∝ exp Stot
k

⎡
⎣⎢

⎤
⎦⎥
⇒ exp 1

k
some constant( )− Gs

T0

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥

                             ⇒ esome constant
k

  e
−Gs

kT0

                          absorb this into
                          the proportionality

Ps ∝ e
−Gs

kT0

Evidently the probability is highest when Gs  is minimum.
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I.  Why phase changes happen where they do in p,T( )  space
II. The critical point
III. The Clausius-Clapeyron Equation
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I.  Why phase changes happen where they do in p,T( )  space
Recall the Equation of State is built from the relationship among 3 things:
i  generalized forces (like pressure p).  These are conditions imposed upon the system.
i  macroscopic system parameters (like volume V).  These are the system's
mechanical  response to external conditions.
i  temperature.  This is the system's thermal  response to external conditions.

So an equation of state encodes much of the detail of a system's unique, specific
structure.  Thus it is natural to expect the eq. of state to provide the foundation for
understanding the system's phase changes.

Example: consider the liquid-gas phase transition for a van der Waals gas.

Eq. of state: p + a
v2

⎛
⎝⎜

⎞
⎠⎟ v − b( ) = RT .

p =  molar pressure
v =  molar volume
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Solve for p:

p = RT
v − b

− a
v2

                                "mutual attraction term" reflects polarizability,
                                tendency of particles to aggregate

"thermal pressure term" reflects motion
that keeps particles separated.

Graph both terms for some choice of T
(i.e., T  is some constant):

Notice the slope has different signs at
different v's.
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Redraw with more labels:

We assert: the system will exist in those p,v( )  configurations that are stable.
Which regions of this diagram indicate stability?

i)  p < p1  is stable.  The slope dp
dv

 is negative, so increased pressure means decreased volume.

Notice that the slope dp
dv

 is small, as would be expected for a gas.

ii) p > p2  is stable.  The slope dp
dv

 is negative.  Notice dp
dv

 is large, indicating a liquid phase.
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iii)  In the range p1 < p < p2,  three v's are possible for each p.  Which v corresponds
to the maximum stability?

Conditions in which v1 < v < v2  correspond to instability, because here dp
dv

> 0.

So the question reduces to a choice of 2 v's per p.

Consider 2 points: pA ,vA( )  and pA ,vB( ). When the system has pressure pA ,
which volume does it choose?
**It chooses the volume for which the Gibbs Free Energy G  is minimized.**

We now show this.
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Recall the differential dG ≡ −SdT +Vdp + µdN       (lecture slide 299)
Define the molar form of dG :  
dg ≡ −sdT + vdp + µdn.             All of the lower case variables are "per mole."

Recall that the curve on slide 305 is for a fixed temperature, so dT = 0.
Additionally choose an isolated system, so dN = 0.
Then dg = vdp.
Integrate to get:

g − ginit = vdp '
pinit

p

∫
Choose "init" to be point O.
Notice the RHS of this equation is the area between the curve and the p-axis.
Carry out the integral and plot the results:
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What does the system do as it evolves in g - p space?



310	
  

At O, it has no choice: it is a gas.
On line O-K-X-N: gas phase, large values of v > v2, high compressibility
On line J-X-M-R: liquid phase, small values of v < v1,  low compressibility
On line N-D-J: this is the intrinsically unstable range v1 ≤ v ≤ v2.
The system is a gas; it travels O-K-X.
At X, gas and liquid can coexists: this is the phase transition point.
To the right of X, the system's g will be minimized if it transitions to
liquid rather than remaining gas, so it condenses to liquid and evolves to line M-R.

Where is X on the p-v curve?
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"X" corresponds to the whole line from A to B.  This is the path that the system 
actually traverses while it is condensing during the phase transition.
Recall "condensing" means V decreases while p stays constant.

So "X" is always associated with a horizontal line.
What determines the value of pA ?
By the definition of X, 
g(A) = g(B).

Recall  g − ginit = vdp '
pinit

p

∫ .

                                              Call B = init
                                                     A = upper limit

Then g(A) - g(B)   = vdp '
B

A

∫


.

                 0    = vdp '
B−N−D−J−A
∫
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As the line A-B must be horizontal, this fixes A and B so that the 
shaded areas below are equal:
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II.  The critical point
Recall the p -T  diagram:

                                                                 
                                                                     This line ends here.  Why here?
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Plot p versus v for various temperatures.  We get:

T1 > T2 > T3 > T4 > T5

 

Recall: if the slope goes positive, there will be a phase change.
Each of these will have its own horizontal "X" line whose p-intercept is unique.
Notice:
i  The X line for T3  is not a line: it has shrunk to a point
i  The T1 curve has no X at all.
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Plot the p-intercepts versus the T -values.

The critical point corresponds to the temperature line whose slope goes to zero but not 

positive: i.e., at Tcritical ,  
∂p
∂v

= 0 and ∂
2 p
∂v2 = 0

Suppose a system evolves from Y to Z.
If it takes path 1, it undergoes a phase change.
If it takes path 2, it does not.
When a substance has a p,T( )  in the neighborhood of the critical point, it undergoes
large density fluctuations.  This makes it opaque.  This is called "critical opalescence."

p

p2
p3
p4

T4      T3          T2                   T

Z	
  

Y	
  path	
  1	
  

path	
  2	
  

The critical point 
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III. The Clausius-Clapeyron Equation
The question is: what is the equation for the line that separates the liquid and gas
phases?
Another way to say this is: Given a known p1  and T1,  how can we find the T2

associated with another p2,  or the p2  that goes with another T2 ?
Yet another way to say this is: What is the equation for the vapor pressure of a
substance?

To answer this, consider any point "A" on the phase transition line:

p	
  

T	
  

•  A
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Recall that any point (including "A") has a p-V diagram like this:

On this p-V diagram, 
g1 T , p( ) = g2 T , p( )                                     "Eq 1"

Now consider a point "B" on the p-T diagram:

It too has a p-V diagram, located at T+dT, p+dp( )  with respect to point A.

•  A

•  B
p	
  

T	
  ↔dT	
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B's graph:

For point B, g1 T + dT , p + dp( ) = g2 T + dT , p + dp( ),   which we rewrite as:

g1 T , p( ) + ∂g1

∂T p

dT + ∂g1

∂p T

dp = g2 T , p( ) + ∂g2

∂T p

dT + ∂g2

∂p T

dp         "Eq 2"

Subtract: Eq 2 - Eq 1 to get:

∂g1

∂T p

dT + ∂g1

∂p T

dp = ∂g2

∂T p

dT + ∂g2

∂p T

dp                                          "Eq 3"
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Now recall differential molar Gibbs Free Energy (lecture slide 308):
dg = −sdT + vdp                         "Physics equation"
Compare this term by term to:

dg = ∂g
∂T p

dT + ∂g
∂p T

dp               "Math equation"

Infer that:
∂g
∂T p

= −s

∂g
∂p T

= v

Plug these into Eq 3 to get:
−s1dT + v1dp = −s2dT + v2dp
s2 − s1( )dT = v2 − v1( )dp
Δs ⋅dT = Δv ⋅dp
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Δs
Δv

= dp
dT

.          

This Clausius-Clapeyron Equation means: for any point on the p -T  curve, the slope
dp
dT

 is given by the entropy change Δs and volume change Δv needed to "cross the line":

i.e., needed to undergo a phase transition at that particular p,T( ).
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I.  Latent heat and vapor pressure of an ideal gas
II. Quantum statistics
III. Fermions and bosons

Please read Stowe Chapter 25 (skip the Chapter 25 appendices).
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I.  Latent heat and vapor pressure of an ideal gas

Because there is a ΔS associated with a phase transition, there  is a ΔQ=TΔS.
Define L: The latent heat of transformation.
L ≡ TΔSphase

transition

So ΔSphase
transition

= L
T

.

Plug this into the Clausius-Clapeyron Equation, 
Δs
Δv

= dp
dT

,

to get the vapor pressure equation:
1
Δv

⋅ L
T
= dp
dT

                          In general, Δv = v2 − v1,  but for a liquid to gas transition, v2 >> v1,
                          So let Δv ≈ v2.   Then:
1
v2

⋅ L
T
≈ dp
dT
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For an ideal gas, pv = RT , so v2 =
RT
p

.  Then,

dp
dT

≈ L
RT
p

⎛
⎝⎜

⎞
⎠⎟
T
= Lp
RT 2

Rewrite:
dp
p

= L
R
dT
T 2

Integrate:

ln p = − L
RT

+ const.

                                     Name the const :  "ln p0 "

ln p = − L
RT

+ ln p0

p = p0e
−L RT .       The equation for the vapor pressure of a liquid.
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II.  Quantum statistics
Recall the difference between classical and quantum statistics:

                                     Classical                                   Quantum
A "system" is:               A particle which can occupy     A state (for example energy level) which can
                                     various states.                            be occupied by various numbers of particles.

The probability eq. is:   Ps = Ce
−βEs = e−βEs

e−βEs
s
∑              Pn = Ce

−βn εs−µ( ) = e−βn εs−µ( )

e−βn εs−µ( )

n
∑

                                                      --Notice that the summation indices are different!--

                                     This is the probability that         This is the probability that there are n particles
                                     the particle is in state s.              in a state s whose energy is ε s .

We now focus on the Quantum Statistics column.
A commonly asked question is: What is the average number of particles occupying a given state?
The answer is known as: "the occupation number," n.
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Use the usual formula for averages:

n = Pn ⋅n
n
∑                                               Plug in Pn = Ce

−βn εs−µ( ) :

n = Ce−βn εs−µ( ) ⋅n
n
∑ = C e−βn εs−µ( ) ⋅n

n
∑

                                                                  Name β ε s − µ( ) ≡ x
n = C e−nx ⋅n

n
∑

                                                                  Math trick to convert this to an easy sum:

                                                                  Notice ne−nx = − ∂
∂x

e−nx( ).

n = −C ∂
∂x

e−nx
n
∑⎡
⎣⎢

⎤
⎦⎥

                                 Plug in C :

n = − 1
e−nx

n
∑

∂
∂x

e−nx
n
∑⎡
⎣⎢

⎤
⎦⎥

n = − ∂
∂x

ln e−nx
n
∑⎛⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥                       But what are the limits on the sum?


