
173

IV.  Facts about heat capacities

Heat capacity C =
¶Q

¶T
.  We need an expression for ¶Q.

Recall the First Law: dE = dQ - dW + mdN .

Solve for dQ.

Let dW be represented generally by pdV

Recall Etotal
internal

= N
n

2
kT + m

æ

èç
ö

ø÷

                                  n =  #dof per molecule

                         N = #molecules

Consider an isolated system, so m = 0.

Then dE =
Nn

2
kdT

so dQ =
Nn

2
kdT + pdV .

Divide through by # moles:
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dQ

mole
=

Nk

mole
×
n

2
dT + p

dV

mole

                                       
dV

mole
º dv,  the molar volume

             
Nk

mole
= R,  the gas constant

dQ

mole
= dq,  the heat added per mole

So dq = R
n

2
dT + pdv                  'Eq 1'

Recall CV =
¶Q

¶T V

    is the heat capacity @ constant volume

So cV =
¶q

¶T V

          is the molar heat capacity @ constant volume

Plug in q from Eq 1 to get:

cV =
Rn

2
.      This is IMPORTANT because it means: 

measuring cV gives us n , the #dof per molecule.
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Also recall CP =
¶Q

¶T p

,  so cP =
¶q

¶T p

Recall dq = R
n

2
dT + pdv,  so

cP = R
n

2
+ p

¶v

¶T p

= cV + p
¶v

¶T p

Thus cP - cV = p
¶v

¶T p

Based on empirical data (most things expand when heated), cP  is almost always > cV .

These equations are true for ANY system.
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Now apply them to the special case of an ideal gas.

Begin with the ideal gas law, pv = RT , so

v =
R

p
T

dv

dT p

=
R

p

p
dv

dT p

= R

So for an ideal gas, 

cP - cV = p
¶v

¶T p

= R
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I.  Applications of the laws of thermodynamics

II. Maxwell's Relations

III. Definitions of types of constraints

IV. Facts about ideal gases

Please read Stowe Chapter 16 and Appendix 21A.
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I.  Applications of the laws of thermodynamics

This is Chapters 13 and 14.

Begin with the First Law: dE = dQ - pdV + mdN

                                                            Substitute dQ = TdS, solve for it, and rewrite

TdS = dE + pdV - mdN

All 4 differentials are exact.  They concern functions (properties) of the system that

can be known unambiguously at any moment in the quasi-static evolution of the

system.  

This equation says that not all 4 are independent.  Any 3 are independent: for example,

we can separately vary volume V , number N, and heat Q.

These 2 chapters work out the consequences of their interdependence.
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II.  Maxwell's Relations

Compare the physics equation:          dE = TdS - pdV + mdN

to the math equation:                         dE =
¶E

¶S V ,N

dS +
¶E

¶V S,N

dV +
¶E

¶N V ,S

dN

We notice 2 things:

1) We can compare terms to find that 

¶E

¶S V ,N

= T

¶E

¶V S ,N

= - p

¶E

¶N V ,S

= m

2) Since dE is an exact differential, the path in S -V - N  space to any particular

value of (S,V , N ) does not affect the energy E(S,V , N ).  We can display this

path explicitly through the ordering of partial differentials:
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¶2 E

¶S ¶V
=

¶2 E

¶V ¶S
            

¶2 E

¶S ¶N
=

¶2 E

¶N ¶S
             

¶2 E

¶V ¶N
=

¶2 E

¶N ¶V

¶

¶S
(- p) =

¶

¶V
(T )          

¶

¶S
(m) =

¶

¶N
(T )             

¶

¶V
(m) =

¶

¶N
(- p)

-
¶p

¶S
=

¶T

¶V
                     

¶m

¶S
=

¶T

¶N
                      

¶m

¶V
= -

¶p

¶N

These are the first 3 of Maxwell's Relations.

How to find the rest:

T ,  S,  p,  V ,  m, and N  are the external parameters we can control for a system.

Keep in mind that (p,V ) represent all generalized contributions to work.

In the First Law, we see that they appear naturally paired as 

(T ,S)

(p,V )

(m, N )

such that their product forms a physically meaningful exact differential: energy.
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We keep one of each pair fixed while examining how the variation in the

other one affects dE.

There are 8 unique ways to keep one of each pair fixed while varying the other.

Combination #

1                        TdS    pdV   mdN 

2                       TdS    dpV   mdN

3                       TdS    pdV   dmN

4                       TdS    dpV   dmN

5                       dTS    pdV   mdN

6                       dTS    dpV   mdN

7                       dTS    pdV   dmN

8                       dTS    dpV   dmN

Among the 6 parameters, m  cannot be independently changed for an isolated

system, so we will ignore combinations that include a dm.

Rewrite the list, excluding combinations 3, 4, 7, and 8:
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Combination #

1                        TdS    pdV   mdN 

2                        TdS   dpV   mdN

5                        dTS   pdV   mdN

6                        dTS   dpV   mdN

Add plus and minus signs to combine these, and name the combinations:

Combination #

1                        +TdS - pdV + mdN = dE             internal energy

2                        +TdS + Vdp + mdN º dH         "enthalpy"

5                        -SdT - pdV + mdN º dF           "Helmholtz free energy"

6                        -SdT + Vdp + mdN º dG          "Gibbs free energy"

Each of these 4 combinations is an exact differential, so we repeat on Combinations

2, 5, and 6 the procedure we used on Combination 1 (compare "physics equation" with

"math equation") to get 3 more Maxwell's Relations for each.
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4 Combinations ´  3 Maxwell's Relations per combination = 12 Maxwell's Relations total

They are listed in Table 13.1 in the Stowe book.

Facts about Maxwell's Relations:

1)  They are useful because they: 

relate [quantities that are difficult to measure] to [quantities that are easier to measure]

For example, Relation #10:

         difficult: 
¶S

¶p
T

                                         =  easier: -
¶V

¶T p

2)  They are true for any isolated equilibrium system

3)  We will see later how the +'s and -'s were chosen for the combinations.  It turns out that

these combinations are preserved during certain processes (for example phase changes) and 

under certain constraints (for example constant-temperature/isothermal).

4)  Notice that none of the "official" Relations include 
¶E

¶something
.  If we need a relation

involving that term, we begin again with the First Law.  We rewrite it in a way that moves 

the dE  to the righthand side, and moves to the lefthand side one of the other differentials

that we don't need.  Then we repeat the procedure.
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III.  Definitions of types of constraints

Non-diffusive                dN = 0

Isovolumic, isochoric    dV = 0

Adiabatic                       dQ = 0

Isobaric                          dp = 0

Isothermal                      dT = 0
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IV.  Facts about ideal gases

Fact 1: for an ideal gas in an adiabatic process, 

p ×V g =  constant, 

where g =
n + 2

n
=

Cp

CV

and n = # dof per mole

Cp ,CV  are specific heats

Proof: Consider an isolated system, so dN = 0.  Write down everything

(i.e., 3 things) we know about it.  Begin with:

(1)  The equation of state, pV = NkT

Take differentials of both sides: d pV( ) = d NkT( )

Because dN = 0,  this simplifies to pdV +Vdp = NkdT

¸ by Nk  to get: 
p

Nk
dV +

V

Nk
dp = dT                           "Eq 1"
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(2) The energy E = # dof ´
1
2 kT

dof
.

A truly ideal gas has 3 dof (from px , py , pz ) per molecule.

Generalize this: just say it has n  dof per molecule.

If it has N molecules, 

E =
1

2
NnkT

Take the differential of both sides:

dE =
1

2
NnkdT                                      "Eq 2"

(3) The First Law: dE = dQ - pdV + mdN .

Isolated system: dN = 0

Adiabatic process: dQ = 0

dE = -pdV                                                "Eq 3"
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Combine Eq 2 and Eq 3 to eliminate dE:

1

2
NnkdT = - pdV

dT =
-2 p

Nnk
dV                                        "Eq 4"

Combine Eq 1 and Eq 4 to eliminate dT:

p

Nk
dV +

V

Nk
dp =

-2 p

Nnk
dV  

pdV +Vdp =
-2 p

n
dV

¸ through by pV:

dV

V
+

dp

p
= -

2

n

dV

V
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1+
2

n

æ

èç
ö

ø÷
dV

V
= -

dp

p

n + 2

n

æ

èç
ö

ø÷
dV

V
= -

dp

p

Integrate both sides.

n + 2

n

æ

èç
ö

ø÷
lnV = - ln p + const

n + 2

n

æ

èç
ö

ø÷

ß

lnV + ln p = const

Call this "g "

g lnV + ln p = const

Exponentiate both sides.

pV g = const

We have the right form of the equation, but we still must now show that g =
Cp

CV

:
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Begin again with (3) the First Law: dE = dQ - pdV + mdN .

For isolated systems, dN = 0.

Then dQ = dE + pdV .                                         "Eq 5"

(4)  Recall definition:  CV º
¶Q

¶T V

Plug in Eq 5:

CV º
¶E

¶T V

(5)  Recall definition: Cp º
¶Q

¶T p

Plug in Eq 5:

Cp º
¶E

¶T p

+ p
¶V

¶T p

So 
Cp

CV

=

¶E

¶T p

+ p
¶V

¶T p

¶E

¶T V

                                    "Eq 6"
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Recall (1) the equation of state: pV=NkT.

So p
¶V

¶T p

= Nk.   Plug this into Eq. 6.

Recall (2) the energy equation: E =
NnkT

2
.

So 
¶E

¶T p

=
Nnk

2

and 
¶E

¶T V

=
Nnk

2
     Plug these into Eq 6.

Then 
Cp

CV

=  

Nnk

2
+ Nk

Nnk

2

=
n + 2

n
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Fact 2 about ideal gases: E = E(T ) only, no volume dependence.

Proof:

Recall for any system, dE = dQ - pdV + mdN

Plug in dQ = TdS

Then dE = TdS - pdV + mdN

This would lead us to expect E  to depend on T  and V .  

But:  for ideal gases, because V  and T  are connected through

pV = NkT , we can write E = E(T ) only.

Fact 3 about ideal gases: TV g -1 = constant

Proof: begin with pV g = constant                                "Eq 1"

Equation of state: pV = NkT , so p =
NkT

V
.

Then Eq 1 becomes: 

NkT

V
×V g = constant

TV g -1 =
constant

Nk
= constant2
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I.   Free expansion of a non-ideal gas

II.  Reversibility

III. Behavior of a system in equilibrium with a reservoir

Please read Stowe Chapter 17 and the Feynman slides linked to the

course webpage.
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I.  Free expansion of a non-ideal gas

Consider a gas isolated in a container.  Allow its volume to change by DV.  How

does its temperature change?

This problem serves as an example to illustrate use of Maxwell's Relations and

definitions of various thermodynamic quantities.

Method                                                  A ctions

"Where to begin?                                   dE = dQ - pdV + mdN

Write the First Law."                              Let dQ = TdS

                                                             dE = TdS - pdV + mdN

"See what we can set = 0                       "isolated": dE = 0,  dN = 0

based on constraint info                        Thus 0 = TdS - pdV + 0

given in the statement of                       Re write this as dS =
p

T
dV                      "Eq 1"

the problem."
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Method                                               A ctions

"This relates dS to dV, but                  Eq 1 is the "physics statement".

the problem asks for a relation            Need also a "math statement":

between dV and dT.  Use                   dS =
¶S

¶T V

dT +
¶S

¶V T

dV                  "Eq 2"

Maxwell's Relations to                       Compare Eq 1 to Eq 2.  LHS's are equal

convert dS to dV and dT."                 so RHS's must also be equal:

                                                          
¶S

¶T V

dT +
¶S

¶V T

dV =
p

T
dV

"Substitute for the partial                   
¶S

¶T V

º
1

T
CV   

derivatives by using Maxwell's          
¶S

¶V T

=
¶p

¶T V

  Compute 
¶p

¶T V

 from the equation of state.

Relations or definitions of heat

capacity, compressibility, etc.

(measureable properties)."
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Substitute:

1

T
CV dT +

¶p

¶T V

dV =
p

T
dV

dT =
T

CV

p

T
dV -

¶p

¶T V

dV
é

ë
ê

ù

û
ú

dT =
1

CV

p - T
¶p

¶T V

é

ë
ê

ù

û
údV
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II.  Reversibility

Consider a thermodynamic system and its local surroundings.

Ex: a glass of water, piston in cylinder, etc.        

                                                                     These are any other systems that may provide

                                                                     e nergy to it or absorb energy from it, such as

                                                                     he at reservoirs, springs, weights on pulleys.

Suppose the thermodynamic system undergoes a process: it receives or loses heat, 

compresses or expands, etc.

Use this context to define Reversibility in two ways:
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Definition 1: The process is called reversible if, at its conclusion, both the system and

its local surroundings may be restored to their initial states without producing any

changes (i.e., any increase in the number of accessible states) in the rest of the universe.

Definition 2: Call the thermodynamic system + the local surroundings + the rest of the

universe "the combined system A0 " which has entropy S0 .  Recall that for any process,

DS0 ³ 0.  A process is reversible only if its DS0 = 0.

If the forward process were to cause DS0 > 0,  then the initial conditions could only be

recovered by a reverse process that yielded DS0 < 0,  and this is forbidden by the

Second Law.

Example of an irreversible process: free expansion of a real gas in a volume.  To return

it to its original compressed state requires adding work from the local surroundings.

The work heats the gas.  The heat must be exhausted to a reservoir.  So returning the

gas to its original Ti ,Vi( )  requires the external environment to provide work and 

absorb heat.  In this case DSgas + DSenvironment > 0.
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No natural process is truly reversible, because all natural processes involve 

dissipative effects (friction, viscosity, electrical resistance, etc.) which cause

work to be converted to heat.  There is no way to "organize" the heat 

in a way that will reconvert 100% of it to work.

Any reversible process is a theoretical approximation to a real system in which

dissipation has been minimized.  A dissipative process takes coherent

collective motion (e.g. a book sliding on a table) and transforms it into heat

(random motion of the stalled book's molecules).

Coherent motion can be achieved in fewer ways Wi( )  than random motion

W f( ),  so friction increases the entropy S = k lnW( )  of a system.
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III.  Behavior of a system in equilibrium with a reservoir

The issue is: we typically want to write questions like

"What is the state of 
an electron

an atom

ì
í
î

ü
ý
þ

 in 
a metal

a stellar atmosphere

ì
í
î

ü
ý
þ

?

We mean: what is the probability that it is in a specific state, which is characterized

by particular values of energy, angular momentum, etc.

Example:  if the system is at temperature T, what is the probability that the electrons

are in energy level L and will radiate correspondingly?

To answer, we calculate the probability, compare to experiment, and if we find

a disagreement, this may signal that the theory that predicted these levels is wrong.

Then the theory develops further....

To describe these probabilities, consider a small system named D,  in equilibrium

with a reservoir R.  Call the combined system of D + R( ) = A0 .
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We cannot consider D alone.  It cannot do anything alone.

If it makes a transition, that is because it gets energy from R or gives up 

energy to R.  

So the two systems are coupled.

Let the # of accessible states for D be called WD .

and the # of accessible states for R be called WR .

Thus the # of accessible states for A0  is W0 = WR ×WD .

Recall that the probability for 
D is in a particular configuration AND

R is in a particular configuration

æ

èç
ö

ø÷
=

WR ×WD

Wtot

(Recall an example computation of this in Stowe Table 8.1 and page 76 of

these lectures.)
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Suppose we want to ask, "what is the probability that D is in one particular state

(call that state "s")?

Thus by the formulation of the question, WD = 1.

Then ProbD  is in state s =
WR ×1 

Wtot

µWR

Now recall the entropy of R:

SR = k lnWR

So WR = eSR /k

So ProbD  is in state s µ eSR /k                                     "Eq 1"

Notice that the probability for the configuration of D depends upon information

from R because the two systems are coupled.
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To find SR :  

Suppose that R begins with entropy SR

0 .

Recall with the First Law: dE = TdS - pdV + mdN ,

so dS =
1

T
dE +

p

T
dV -

m

T
dN

Notice that in order to reach the state s, D must take from R:

energy dE

volume dV

particles dN .

When this happens, the entropy of R is reduced by 

dSR =
1

T
dE +

p

T
dV -

m

T
dN

So the entropy of R becomes

SR = SR

0 - dSR = SR

0 -
1

T
dE + pdV - mdN( )

Plug this into Eq. 1:
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ProbD  is in state s µ eSR /k µ exp
SR

0

k
-

1

kT
dE + pdV - mdN( )

é

ë
ê

ù

û
ú

                               µ exp
SR

0

k

é

ë
ê

ù

û
úexp -

1

kT
dE + pdV - mdN( )

é

ë

ê
ê
ê

ù

û

ú
ú
ú

                                                            D efine b=
1

kT

              absorb this term into the proportionality

ProbD  is in state s = C exp -b dE + pdV - mdN( )éë ùû

Constant of proportionality "C" is not determined yet.
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I.  Classical versus quantum statistics

II. Example problem using quantum statistics

III. Example problem using classical statistics

IV. Degeneracy and multistate systems

V. Equipartition

Please read Stowe Chapter 18.
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I.  Classical versus quantum statistics

We must distinguish STATES from SYSTEMS.

STATE: a unique set (or range) of parameters (x,p) in phase space

SYSTEM: not yet clearly defined in this course!  We will now develop the meaning of "system".

Consider 2 ways of thinking about a microscopic system:

Way #1                                                                   W ay #2

A group of particles that can occupy                       A  state that can be occupied by various

any of several different states                                   numbers of particles.

Here DN = 0    (number of particles is fixed)           Here DV = 0           (volume is fixed)

So for this point of view, the probability that           And for this point of view, the probability that

the system is in state "s" is                                       the system is in state "s" is

Ps = C1 exp -b DE + pDV - mDN( )éë ùû                      Ps = C2 exp -b DE + pDV - mDN( )éë ùû

Need to know DE necessary to get to E s

Do we need to know DV?
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(Way #1, continued)                                                (Way#2, continued)

When a system changes state, its DE >> pDV .

For example, when an electron changes energy

levels in an atom, the volume of the atom

changes very little.  So pDV  is negligible

compared to DE.                                                       N o approximations yet here, so we still have:

Then Ps C1e
-bDE                                                     Ps = e

-b DE-mDN( ).    Factor out the DN in the exp to get:

Consider a system for which Eground = 0.                  Ps = e
-bDN

DE

DN
-m

æ

èç
ö

ø÷

.

In this case the DE  necessary to reach                                                D efine n = DN =  #particles in a state

state "s" is E s .                                                                   D efine e s =
DE

DN
= energy per particle in the state.

Then Ps = C1e
-bEs                                                     Ps = C2e

-bn es -m( )

This point of view is called Classical Statistics.       This point of view is called Quantum Statistics.
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Facts about both kinds of statistics:

i)  Since P µ eEs  or es ,  the higher the energy of the state, the less probable it is

that the system will populate it.

ii)  Normalize to find the constants C1  and C2 :

(Classical)                                                (Quantum)

Prob(system is in some state) = 1             Prob(system has some number of particles in it) = 1

Ps = 1
s

å                                                   Ps = 1
n

å                summation indices are different!

C1e
-bEs

s

å = 1                                          C2e
-bn es -m( )

n

å = 1

C1 =
1

e-bEs

s

å
                                          C2 =

1

e
-bn e s -m( )

n

å
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II.  Example problem using quantum statistics

Consider photons in an oven.

T = 500K

m  per photon = 0               (This means: "photons don't interact with each other.")

Consider a state that has energy 0.1 eV.

(a)  What is the relative probability that the state is occupied by 1 photon,

compared to the probability that it is unoccupied?

Note: the subject of the question is the state itself, so we use quantum statistics.

Interpret the question mathematically:

What is 
P n = 1( )
P n = 0( )

?
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In general, with quantum statistics, P n( ) = Ce
-nb e s -m( )

.

Recall b º
1

kT
.

Recall C = C2 =
1

e
-bn es -m( )

n

å

So 
P n = 1( )
P n = 0( )

=
Ce

-1×b e s -0( )

Ce
-0×b e s -0( )

=
e-be s

1

= exp -
1

8.63´10-5 eV

K

æ

èç
ö

ø÷
500K( )

× 0.1eV( )

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

= 0.1.

(b)  What if the question were rephrased as "What is the absolute probability that 

the state is unoccupied?"

Interpret this to mean: What is P n = 0( )?

i.e.,  Since P n = 0( ) = Ce
-0×b es -0( )

= C,   what is C?
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Recall C = e
-nb e s -m( )

n=0

M

å
é

ë
ê

ù

û
ú

-1

  where M  =  max # photons that can occupy the state.

An interesting feature of photons is that for them, M is ¥.

So we need

C = e-nx

n=0

¥

å
é

ë
ê

ù

û
ú

-1

      where x = be s .

                               This sum is computed in Appendix 21A (Stowe page 372).

C =
1

1- e- x

é

ëê
ù

ûú

-1

.

                               Plug in x = be s =
e s

kT

C =
1

1- 0.1

é

ëê
ù

ûú

-1

= 0.9
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III. Example problem using classical statistics

Consider hydrogen atoms in an oven.

T = 300K

m = 0

Recall that for electrons in hydrogen, E0 = -13.6eV

                                                           E1 = -3.4eV

What is the probability that any particular hydrogen's electron will be

in E1,  compared to the probability that it will be in E0 ?

Note: the subject of the question is a particle: use classical statistics.

Interpret the question: 
P s = 1( )
P s = 0( )

= ?
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Recall P s( )classical
statistics

= Ce-bEs     

                                    w here b=
1

kT
   

                                    a nd C= e-bEs

s

å
é

ë
ê

ù

û
ú

-1

.

So 
P s = 1( )
P s = 0( )

=
Ce-bE1

Ce-bE0
= e

-b E1-E0( )
.

Plug in:

P s = 1( )
P s = 0( )

= exp -
1

8.63´10-5 eV

K

æ

èç
ö

ø÷
300K( )

-3.4eV( ) - -13.6eV( ){ }

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

= e-394 .     

SMALL!  

We can conclude that 
P s = 1( )
P s = 0( )

= exp -
E1 - E0( )

kT

é

ë
ê

ù

û
ú » 0  for E1 - E0( ) >> kT .

That is: the probability for excitation is negligibly small if T <<
E1 - E0( )

k
.
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Define: the excitation temperature Te  of a system is defined by 

                                Te º
E1 - E0( )

k
.

It is the temperature above which there is a non-negligible probability

that the system's particles will populate levels above the ground state.
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IV.  Degeneracy and multi-state systems

Suppose ns  states all have the same energy Es ,  "level Es  is n-fold degenerate." 

Suppose that the probability for the system to be in any particular state "s" is Ps .

Then the probability PEs
 that the system has energy Es  is:    PEs

= nsPs .

If there are several excited  states ("e") of similar energy, 

and several ground  states ("g") of similar energy,

P particle is in any excited state( )
P particle is in any ground state( )

=

Ce-bEe

all excited
states "e"

å

Ce
-bEg

all ground
states "g"

å
=

e-bEe

all excited
states "e"

å

e
-bEg

all ground
states "g"

å
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Suppose all excited states "e" have nearly the same energy.  

Then Ee  is a constant uninfluenced by the summation: e-bEe

all excited
states "e"

å Þ e-bEe 1
all excited
states "e"

å
æ

è

ç
ç

ö

ø

÷
÷

= e-bEe ×ne

Suppose all ground states "g" have the same energy.  

Then Eg  is a constant uninfluenced by the summation: e
-bEg

all ground
states "g"

å Þ e
-bEg 1

all ground
states "g"

å
æ

è

ç
ç

ö

ø

÷
÷

= e
-bEg ×ng

Then 
P particle is in any excited state( )
P particle is in any ground state( )

=
e-bEe ×ne

e
-bEg ×ng

=
ne

ng

æ

è
ç

ö

ø
÷ e

-b Ee-Eg( )
.

This Ee - Eg( )  is called the "band gap."
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V.  Equipartition

Recall the Equipartition Theorem:

"If a system described by classical statistical mechanics is in equilibrium at the Kelvin

temperature  T ,  every independent quadratic term in its energy has a mean value equal 

to 1
2 kT ."

We now prove this.

Consider a degree of freedom which is storing energy E = bq2 ,  where 

q is generalized x or p.

Recall the formula for the mean value of anything:

E = PsEs

states  s

å

Here Es  is the energy of the system when in state "s"

Here Ps  is the probability that the system is in state "s"

Plug in Ps = Ce-bEs =
e-bEs

e-bEs

s

å
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E =

e-bEs Es

s

å

e-bEs

s

å

                            A pproximate å by dqò .

                            Plug in E = bq2 .

E =
dqe-bbq2

bq2

ò
dqe-bbq2

ò

   = -
¶

¶b
ln dqe-bbq2

òéë ù
û

                          Let y = q b ,  so q =
y

b

                          Then bbq2 = by2

                          a nd dq =
1

b
dy
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E = -
¶

¶b
ln

1

b
dye-by2

ò
é

ë
ê

ù

û
ú

  = -
¶

¶b
ln b -1/2 dye-by2

òé
ë

ù
û

  = -
¶

¶b
-

1

2
lnb + ln dye-by

2

òéë ù
û

ì

í
ï

î
ï

ü

ý
ï

þ
ï

                                O nce this integral has been done, it will have no dependence on b,

                                s o 
¶

¶b
 acting on it will produce zero.

   = -
¶

¶b
-

1

2
lnb

ì
í
î

ü
ý
þ

  =
1

2
×

1

b
                   But b º

1

kT

E =
1

2
kT          per degree of freedom expressed as bq2 .
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I.    Heat capacities and dormant degrees of freedom

II.   Brownian motion

III.  Particle velocities in gases

Please read the slides on Transport Processes linked to the course webpage.
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I.  Heat capacities and dormant degrees of freedom

Plan for this section:

0)  Recall that g =
CV

CP

=
u + 2

u
        where u  is number of dof of the species under consideration.

1)  Calculate the theoretical g  for a gas, using classical physics.

2)  See that this prediction does not agree with data

3)  Show how quantum mechanics explains the difference.

We now carry out the plan.

1) Recall the classical prediction for number of degrees of freedom (u) of a gas:

We used a table (see page 12 of  these lectures) to count generalized coordinates, then assessed

which of them contribute to degrees of freedom.  For a system of molecules with N atoms 

per molecule:
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# generalized position coordinates xi = 3N         # generalized momentum coordinates p i = 3N

3 are due to COM location                                    3 a re due to COM momentum

X are due to COM angular orientation                  X  are due to COM angular momentum

where X=

0 for monatomic molecule

2 for linear molecule

3 for any other molecule

ì

í
ï

î
ï

                 where X=

0 for monatomic molecule

2 for linear molecule

3 for any other molecule

ì

í
ï

î
ï

Total needed to describe COM: 3+X                    Total needed to describe COM: 3+X

To make everything in this column                      Similarly, there must be 3N-(3+X) vibrational

sum to 3N, there must be 3N-(3+X)                     momenta storing KE.

vibrational separations storing PE.

                                         Be ar in mind that these coordinates do not contribute

                                         de grees of freedom in a field-free problem.
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Let us use the table to make predictions for various gas species in a field-free environment.

Species                                      X      N        u=#dof                               g =
u + 2

u

Monatomic gas (He, Kr, Ar)       0     1         3 [all due to COM KE]      
3+ 2

3
= 1.667

diatomic (linear) gas (H2 ,O2 )     2      2         7 [count: 3+2+2(3N-5)]     
7 + 2

7
= 1.286

8-atomic gas (ethane, C2H6 )      3      8        42[count: 3+3+2(3N-6)]      
42 + 2

42
= 1.05

(We could translate these predictions from g  to cV ,  which is what is used by Stowe.)

2)  Now compare to data, using Table 40-1 from the Feynman Lectures:

Species               Measured g  (recorded at temperatures in the range 93-573 K)       

He                      1.66

Kr                       1.68

Ar                       1.67

ü

ý
ï

þ
ï

                      These match the prediction

H2                       1.40

O2                       1.40

ü
ý
þ

                     
These don't match the prediction, but they would if

u  were 5 instead of 7.  Are there no vibrations? 

ì
í
î

C2H6                   1.22 }                        These don't match, but would if u  were 10 instead of 42.



223

Comparison to data, continued:

Classical theory predicts that u  is not a function of temperature, but

see Feynman Figure 40-6:

The theoretically predicted 

value for diatomic 

molecules, γ=1.286, does 

not onset until T=2273 K.
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3)  How quantum mechanics explains this

Recall from Physics 330 that both rotational and vibrational motion are quantized.

Specifically,
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Please accept for now that if a system is in its ground vibrational state (nvib = 0),

it doesn't vibrate (i.e., the 1
2  doesn't contribute, to be explained later).

Similarly, for = 0, it doesn't rotate.

So Emin
vib

= 1.5 w 0

and Emin
rot

=
2 2

2I
=

2

I
.

Now recall we just showed that in general,

Prob(excited)

Prob(ground)
= e

-b Eexcited -Eground( )
= e

- Eexcited-Eground( )/kT
.

So if T <<
Eexcited - Eground

k
,  the system has a low probability of being in its

excited state.

For vibrational excitation, 
Eexcited - Eground

k
»

1.5 w 0 - 0.5 w 0( )
k

>typically 2000K

For rotational excitation, 
Eexcited - Eground

k
»

2

I
>typically 2K
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So we expect, for gases:

A similar effect occurs in solids.  We observe it through their heat capacities:

Recall their E =
uNkT

2

                                     w here u =  #dof per molecule

                                     a nd N =  # molecules

                                     But Nk = nR, for n =  #moles, R =  universal gas constant

Then E =
nRkT

2

γ or cV              

add vibrational dof’s

add rotational dof’s

translational dof’s only

10             100             1000           10000
Temperature (K)

(Log scale)

                          

𝜐nRT
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Consider a solid with N  atoms.

#dof = 6N -12 » 6N

#dof

atom
= 6

Then E =
6nRT

2

Recall CV =
¶Q

¶T V

But DE = DQ - pDV + mDN , so

CV =
¶E

¶T V

Þ

¶
6nRT

2

æ

èç
ö

ø÷

¶T
= 3nR

So classically we expect cV º
CV

n
= 3R

So classically we expect 
cV

R
= 3           i.e., absolutely constant.
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What is actually seen, experimentally:

Early experimenters could only measure

at room temperature (here) so they did

not see the fall-off at low temperature.

Hence the so-called Dulong-Petit "Law"

of 1819, that says cV = 3R,  is just a

high-temperature approximation.
300K
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