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I.  Mathematical detour #2: characterizing fluctuations
II. Mathematical detour #3: the relative size of fluctuations compared to
    the number of members in a distribution
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I.  Mathematical detour #2: characterizing fluctuations

A fluctuation is any case when a member of a distribution does not take the value
of the mean.
We sometimes want to characterize the typical fluctuation in order to know how likely
any particular member is to deviate from the mean (i.e. deviate from what is expected).

σ 2  is a useful characterization because every fluctuation contributes to it;
the positive (above the mean) and negative (below the mean) do not cancel each other
out, so no information is lost.

σ = σ 2  is equally useful.

We will now show that σ = Npq,  where
N =  total #events (members) in the distribution
p =  probability that any particular event meets the criteria being measured
q =  probability that any particular event fails the criterion.
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Recall that by definition, σ 2 = Δu( )2 = P(ui ) ui − u( )
i
∑ 2

.

Call the ui = n (n = 0,  1,  2,  ...,  N ) so we can use the usual notation for 
the binomial distribution.  Then:

σ 2 = Δn( )2 = n − n( )2 = n2 − 2nn + n 2

     = n2 − 2nn + n 2

      = TermA - TermB + TermC

TermB:  Recall cf = cf .  Here, c = 2n. 
TermC:  Recall c = c.  Here c = n 2.

σ 2 = n2 − 2n ⋅n + n 2 = n2 − n 2

Calculate n2  = n2PN n( )
n
∑ .          Plug in the binomial distribution.

                     = n2 N!
n! N − n( )! p

nqN−n⎡

⎣
⎢

⎤

⎦
⎥

n
∑
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To do this sum, notice

npn = p
∂ pn( )
∂p

.

Similarly,

n2pn = n p ∂
∂p

⎛
⎝⎜

⎞
⎠⎟
pn

        = p ∂
∂p

⎛
⎝⎜

⎞
⎠⎟
npn

        = p ∂
∂p

⎛
⎝⎜

⎞
⎠⎟
p
∂ pn( )
∂p

        = p ∂
∂p

⎛
⎝⎜

⎞
⎠⎟

2

pn

So we can replace n2  by p ∂
∂p

⎛
⎝⎜

⎞
⎠⎟

2

 if it precedes pn .

Return now to the calculation....
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n2  = n2 N!
n! N − n( )! p

nqN−n⎡

⎣
⎢

⎤

⎦
⎥

n
∑ .           Replace the n2.

     = p ∂
∂p

⎛
⎝⎜

⎞
⎠⎟

2
N!

n! N − n( )! p
nqN−n⎡

⎣
⎢

⎤

⎦
⎥

n
∑

     = p ∂
∂p

⎛
⎝⎜

⎞
⎠⎟

2
N!

n! N − n( )! p
nqN−n⎡

⎣
⎢

⎤

⎦
⎥

n
∑

     = p ∂
∂p

⎛
⎝⎜

⎞
⎠⎟

2

p + q( )N

    = p ∂
∂p

⎛
⎝⎜

⎞
⎠⎟
p ∂
∂p

⎛
⎝⎜

⎞
⎠⎟
p + q( )N

    = p ∂
∂p

⎛
⎝⎜

⎞
⎠⎟
pN p + q( )N−1

    = pN ∂
∂p

p p + q( )N−1{ }
    = pN p N −1( ) p + q( )N−2 + p + q( )N−1{ }.               Recall p + q = 1.

     =pN p N −1( ) ⋅1+1{ }
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So n2 = pN pN − p +1( ).
                                                Since p + q = 1,  - p +1= q
          = pN pN + q( )
      n2 = pN( )2 + pNq             "Eq 1"

Now we must show that pN = n, which is the average number of successes
among N events.

n = nP(n)
n
∑

                                                   Plug in the binomial P(n)

n = n N!
n! N − n( )!

⎡

⎣
⎢

⎤

⎦
⎥

n
∑ pnqN−n

                                                   Replace npn → p ∂
∂p

pn



114	   

n = N!
n! N − n( )!

⎡

⎣
⎢

⎤

⎦
⎥

n
∑ p ∂

∂p
pnqN−n

n = p ∂
∂p

N!
n! N − n( )!

⎡

⎣
⎢

⎤

⎦
⎥

n
∑ pnqN−n

n = p ∂
∂p

p + q( )N

n = pN p + q( )N−1                  But (p + q) = 1
n = pN
Plug this into Eq 1 to get:

n2 = n 2 + pNq

n2 − n 2

⇓
 = pNq

σ 2 = pNq

σ = pNq      This predicts/characterizes the size of a typical fluctuation
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II.  Mathematical detour #3: relative size of fluctuations compared to number of 
members in the distribution

Recall σ = Npq
and n = Np

So σ
n
=

Npq
Np

= q
p
⋅ 1
N

Thus σ
n
∝ 1

N
.

So the more members there are, the smaller the characteristic fluctuation is, relative
to the mean.
Example:  Suppose 
N = #air molecules in a room, 1028

n = average #molecules in the front half of the room, 1028

2
Then a characteristic fluctuation we might observe, if we check a large number of

identical rooms, is σ = Npq = 1028 ⋅ 1
2
⋅ 1
2
= 1014

2
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The relative size σ
n
= 1014 / 2

1028 / 2
= 10−14.

That is: the number of molecules in the front half is generally VERY close to its
mean for large N.  If one molecule drifts to the back, there are relatively many
more ways, many more molecules to effect a compensation for that fluctuation.

Now compare this to the case in which N is small.  Then each molecule's
position (front or back of room) carries relatively larger weight in the 
characteristic fluctuation:
If N=100

Then n(front half) = 100
2

= 50

σ = Npq = 100 ⋅ 1
2
⋅ 1
2
= 5

σ
n
= 5

50
= 0.1
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I.  Mathematical detour #4: the Gaussian distribution
Please read Stowe Chapter 10.
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I.  Mathematical detour #4: the Gaussian distribution
Recall the binomial distribution:

PN (n) = N!
n! N − n( )! p

nqN−n

This is the probability of n successes out of N trials, if the probability
of success per trial is p and the probability of failure per trial is q.
The binomial distribution is true in general, for any choices of n,  N ,  p,  (q = 1- p).

Our goal here: find an approximation for it when
i)  N is very large
ii)  We only care if the approximation matches
the true distribution in the region of the mean.
The approximation is called a Gaussian distribution

In figure: histo = binomial,
green curve = the Gaussian (note, too wide 
and skewed left)
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We want an approximation for the shape of  PN (n) = N!
n! N − n( )! p

nqN−n .

Consider the natural log: ln PN (n)[ ] = ln N!
n! N − n( )! p

nqN−n⎡

⎣
⎢

⎤

⎦
⎥.

Define n =  the n for which P is max.  Note, this is the max, not necessarily the mean.

So by definition, dP
dn

=
d lnP( )
dn

= 0        @n = n.

Because we only want to match the distribution near the mean, consider small deviations
η  about the mean, so consider n's for which n = n +η.
Expand lnP in a Taylor series.  (We convert to ln, and then unconvert later, as a trick
to ensure that the series converges.  See slide 126 for details.)

lnP n( ) = lnP n( ) + d lnP
dn n= n

⋅η + 1
2
d 2 lnP
dn2

n= n

⋅η2 + ...

                                  Define coefficients Bk ≡
dk lnP
dnk n= n

.

lnP n( ) = lnP n( ) + B1 ⋅η + 1
2
B2 ⋅η

2 + .1
6
B3η

3...
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Notice:

1)  B1 = 0               d lnP
dn n= n

= 0,  the first derivative of a function is zero at its max
⎛
⎝⎜

⎞
⎠⎟

2)  B2  is intrinsically negative, because this is an inflexion point.
So call it B2 = − B2  to emphasize this.

Thus:

lnP n( ) = lnP n( )− 1
2
B2 ⋅η

2 + .1
6
B3η

3...

Take the exp of both sides:

exp lnP(n) = P(n) = exp lnP n( )− 1
2
B2 ⋅η

2 + .1
6
B3η

3...⎡
⎣⎢

⎤
⎦⎥

P(n) = elnP n( )
 e

−1
2
B2 ⋅η

2

e
1
6
B3η

3 ...



       call this " P"        neglect this for "small η"

P(n) ≈ Pe
−1

2
B2 ⋅η

2

                            'Eq A.'  This is the approximation we seek.
Now work out B2.  We need to find B1,  then take its derivative:
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B1 =
d lnP
dn n= n

= d
dn

ln N!pnqN−n

n! N − n( )!
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥n= n

                             "Eq 0"

= d
dn

lnN!− lnn!− ln N − n( )!+ n ln p + N − n( )lnq⎡⎣ ⎤⎦n= n
d
dn

lnN!( ) = 0

d
dn

n ln p( ) = ln p

d
dn

N − n( )lnq⎡⎣ ⎤⎦ = − lnq

How to compute 
d lnn!( )
dn

: If n is a large integer (n >>1),  lnn! can be considered

an almost continuous function of n, since lnn! changes only by a small fraction of
itself if n is changed by a small integer.

Hence: 
d lnn!( )
dn

≈ ln n +1( )!− lnn!= ln
n +1( )!
n!

⎛
⎝⎜

⎞
⎠⎟
= ln n +1( ) ≈ lnn
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Similarly, d
dn

ln N − n( )!⎡⎣ ⎤⎦ ≈ − ln N − n( )  for  n >>1

Plug all of these into Eq 0, and recall that B1 = 0.

B1 = 0 = 0 − lnn − − ln N − n( )⎡⎣ ⎤⎦ + ln p − lnq⎡⎣ ⎤⎦evaluated at n=n

0 = − ln n + ln N − n( ) + ln p − lnq                                      'Eq 1'

Thus ln
N − n( ) ⋅ p
n ⋅q

⎡
⎣⎢

⎤
⎦⎥
= 0

                                               Recall ln1= 0, so
N − n( ) ⋅ p
n ⋅q

= 1

N − n( ) ⋅ p = n ⋅q
                                               Use p + q = 1, so q = 1- p
N − n( ) p = n 1− p( )
Np − np = n − np
Np = n                                           'Eq 2'.  We will use this in a moment.
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Now find B2 =
dB1

dn
.  Use Eq 1 but NOT evaluated at n = n.

B2 =
d
dn

− lnn + ln N − n( ) + ln p − lnq⎡⎣ ⎤⎦

B2 = − 1
n
− 1
N − n

.                         Now evaluate this at n = n:

B2 = − 1
n
− 1
N − n

                                                     Plug in n = Np from Eq 2:

B2 = − 1
Np

− 1
N − Np

                                                    In the second term, use p = 1- q



124	  

B2 = − 1
Np

− 1
N − N 1− q( )

    = − 1
Np

− 1
Nq

    = − 1
N

1
p
+ 1
q

⎛
⎝⎜

⎞
⎠⎟

     =− 1
N

q + p
pq

⎛
⎝⎜

⎞
⎠⎟
= − 1

N
1− p( ) + p

pq
⎛
⎝⎜

⎞
⎠⎟
= − 1

Npq
= − 1

σ 2

Thus, B2 = − 1
σ 2
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Now work out P ≡ P n( ).  Use normalization:

P(n)
n=1

N

∑ ≈ P(n)dn∫ = P n +η( )dη
−∞

+∞

∫ = 1

                                                                Use P(n) = Pe
−1

2
B2 η

2

             = P e
−1

2
B2 η

2

dη
−∞

+∞

∫ = 1

                                                                Use B2 = − 1
σ 2

P e
− 1

2σ 2η
2

dη
−∞

+∞

∫ = 1

                                         This integral resolves to:
P 2πσ = 1.

So: P = 1
2πσ

Plug everything into Eq A to get the approximation to the binomial
distribution for large N, near the mean:
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Beginning with Eq A:     P(n) ≈ Pe
−1

2
B2 η

2

                                                                   P = 1
2πσ

                                                                   n = n +η,  so η = n - n

                                                                   and B2 = − 1
σ 2

P(n) = 1
2πσ

e
− 1

2σ 2 n- n( )2

                                         From Eq 2, n ≈ Np.
                                         But Np = n, exactly.
                                         So for this approximation, n = n   ("peak = mean")
Then,

P(n) = 1
2πσ

exp − 1
2σ 2 n - n( )2⎡

⎣⎢
⎤
⎦⎥
.                 The Gaussian distribution
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Why we used lnP instead of P:

Consider some f = 1+ y( )−N ,          for small y
Expand in a Taylor series:

f = 1-Ny + 1
2
N N +1( )y2 − ...

When N is large, Ny can be ≥1, depending on y, so convergence
is not guaranteed.

Choose instead ln f = ln 1+ y( )−N⎡⎣ ⎤⎦ = −N ln 1+ y( ).
Expand this ln in a Taylor series:

ln f = -N y − y
2

2
+ ...

⎛
⎝⎜

⎞
⎠⎟

Take exp of both sides:

exp ln f = f = exp -N y − y
2

2
+ ...

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

which converges for any N  as long as y ≤1.
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I.  Energy of a system in equilibrium with a heat reservoir
II. Heat capacity

Please read Stowe Chapter 11 and Chapter 12 Sections A, B, and F
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I.  Energy of a system in equilibrium with a heat reservoir

Consider a system A1 with average internal energy E1.  It is in equilibrium
with a heat reservoir.
A heat reservoir is a second system (A2 ) that is large relative to A1,  so a
small change in its internal energy E2  does not significantly affect its
temperature T2.  Thus:

∂
∂E2

1
T2

⎛
⎝⎜

⎞
⎠⎟
= 0

                               Energy is conserved between the 2 systems, so ΔE1 = −ΔE2

∂
∂E1

1
T2

⎛
⎝⎜

⎞
⎠⎟
= 0

E1  is the energy of system A1.  E1  can differ from the mean E1  by ΔE1.
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We now show that the probability density that A1 has any particular value of E1  is
given by:  

P E1( ) = 1
2πσ

exp − ΔE1
2( ) /σ 2⎡⎣ ⎤⎦

where   σ = 2

E1,                = #dof

The message: for a macroscopic system,  is huge, so

σ ∝ 1


 is very small, and

P E1( )∝ exp − ΔE1
2( ) /σ 2⎡⎣ ⎤⎦  is very small

unless ΔE1 = E1 − E1 = 0.

Consequently, for a macroscopic system:
i)  one practically never observes deviations from the mean, and
ii) any observed fluctuations follow a Gaussian distribution.
The proof:
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Recall  if Ω0 = #accessible states of the combined system (A1 + A2 ),  then
P E1( ) = const ⋅Ω0 E1( )                                                           'Eq 1'
Recall entropy of the combined system is S0 = k lnΩ0,
so Ω0 = e

S0 /k .     Plug this into Eq 1.

P E1( ) = const ⋅eS0 E1( )/k .                                                           'Eq 1a'

Consider the case when E1 = E1 + ΔE1;  i.e., it varies by a small amount ΔE1

from the mean E1.  See how S0  reflects the ΔE1 :

S0 E1( ) = S0 E1 + ΔE1( )
                                               Expand in a Taylor Series:

          = S0 E1( ) + ∂S0

∂E1 E1

⋅ ΔE1 +
1
2
∂2S0

∂E1
2

E1

⋅ ΔE1( )2 + ...

                                        Recall ∂S0

∂E1 E1

= 0 :     the entropy is maximized at equilibrium

         = S0 E1( ) + 1
2
∂2S0

∂E1
2

E1

⋅ ΔE1( )2 + ...

                                                                    Use S0 = S1 + S2
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S0 E1( ) = S0 E1( ) + 1
2
∂2 S1 + S2( )

∂E1
2

E1

⋅ ΔE1( )2 + ...                             'Eq 2'

                            Focus on this term

∂2 S1 + S2( )
∂E1

2
E1

= ∂
∂E1

∂ S1 + S2( )
∂E1

⎛
⎝⎜

⎞
⎠⎟
= ∂
∂E1

∂S1

∂E1

+ ∂S2

∂E1

⎡

⎣
⎢

⎤

⎦
⎥

                                                                   Use conservation of energy: ∂
∂E1

= − ∂
∂E2

                       = ∂
∂E1

∂S1

∂E1

− ∂S2

∂E2

⎡

⎣
⎢

⎤

⎦
⎥

                                                                   Recall 1
T
= ∂S
∂E

                        = ∂
∂E1

1
T1

− 1
T2

⎡

⎣
⎢

⎤

⎦
⎥

                                                                    Recall for a reservoir, ∂
∂E1

1
T2

⎛
⎝⎜

⎞
⎠⎟
= 0

                      = ∂
∂E1

1
T1

⎛
⎝⎜

⎞
⎠⎟
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                                                             Use E = 1
2
kT ,  so 1

T1

= k
2E1

∂2 S1 + S2( )
∂E1

2
E1

= ∂
∂E1

k
2E1

⎛
⎝⎜

⎞
⎠⎟
= − k

2E1
2                     Plug this into Eq 2:

S0 E1( ) = S0 E1( )− 1
2
⋅ k
2E1

2
E1

⋅ ΔE1( )2 + ...  

           =  S0 E1( )− 1
2
⋅ k
2E1

2 ⋅ ΔE1( )2                       Plug this into Eq 1a:

P E1( ) = const ⋅eS0 E1( )/k = const ⋅exp
S0 E1( )
k

−
 ΔE1( )2

4E1
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

         = const ⋅exp
S0 E1( )
k

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  

⋅exp −
 ΔE1( )2

4E1
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

              call this const'
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                                                           Note σ = 2

E1,  so 

2E1
2 = 1

σ 2

P E1( ) = const '⋅exp
− ΔE1( )2

2σ 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

The probability that the system A1 has energy in the range between
E1  and E1 + dE1  is

P E1( )dE1 = const '⋅exp
− ΔE1( )2

2σ 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dE1

Normalize this to find const ' :

P E1( )dE1 ≡ 1=
−∞

+∞

∫  const '⋅ exp
− ΔE1( )2

2σ 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dE1∫

Conclude: 

const ' = 1
2πσ
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Finally,

P E1( )dE1 =
1

2πσ
⋅exp

− ΔE1( )2

2σ 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dE1       for σ = 2


E1
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II.  Heat capacity
It is an intrinsic property of substances that some can absorb more heat (dQ) than
others per unit change in temperature dT .
This is because while dT  reflects change in thermal energy (modes whose E ∝ q2 ),
various substances can convert dQ into forms of E  that are NOT proportional to q2,
in which cases that energy is not detected as temperature change.
This property depends upon the chemical structure of the substance.

Define: heat capacity at constant "y"( ) :Cy ≡
∂Q
∂T y

where "y" could be pressure, volume, other macroscopic observables.
Notice that Cy  is sensitive to the size of the system (i.e, total amount of material).
More useful definitions for making comparisons between substances
(Note lower and upper case fonts):

Define: molar heat capacity @ constant "y" :cy =
Cy

#moles
.

Define: specific heat @ constant "y" :  c 'y =
Cy

mass
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The equation C = dQ
dT

 is useful if you need to find change of entropy:

ΔS = dS∫ = dQ
T

= CdT
T

= C dT
T

.∫∫∫
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I.    The Third Law
II.   Measuring macroscopic parameters
III.  The relationship between volume and #accessible states
IV.  Other kinds of work
V.   Coefficients of expansion and compressibility
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I.  The Third Law
Recall S = k lnΩ and Ω∝ E/2 .

So S ∝ ln E/2( ) = 2 lnE.

So S ∝ lnE.  Plot this again (recall slide 102):

S	  (or	  Ω)	  

E	  E0	  (could	  
be	  zero)	  

 

By the nature of the ln function, as E→ 0,  S→ Smin.

And because E = 1
2
kT ,  as E→ 0,  T → 0, so

as T → 0,  S→ Smin.

Does Smin  always equal zero?
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Recall again that S = k lnΩ     (Ω = #states)
so Smin = k lnΩmin.
If there is one unique ground state, then Ωmin = 1.
ln1= 0,  so
if there is one unique ground state, then Smin = 0.

If the ground state is degenerate (there are n >1 states with the same minimum
energy), then Smin = k lnn ≠ 0.

Notice that once the energy becomes very low (the limit E→ 0), the details
of the system (system parameters V, pressure, 


B,...) are irrelevant.

This is the Third Law: as T  (or E)→ 0, S→ Smin,  regardless of the values
of the system parameters.

The limit of the temperature at which S = Smin  is called absolute zero.
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Note: for some non-zero temperature T0,

S T0( ) = dS
0

T0

∫ = dQ
T0

T0

∫ = CdT
T0

T0

∫

                                           If C(T = 0) is not 0, this integral will diverge as ln(0)

But we know that S(T0 ) is
a finite, never infinite, quantity,
because of its alternative definition
as S = k lnΩ.

So purely for mathematical consistency, we must have C T → 0( )→ 0.
This has been experimentally demonstrated, and we will see later that 

CV ≈ E
V

⎛
⎝⎜

⎞
⎠⎟

2

exp −E /T( )      as T → 0.
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What does it mean for C T → 0( )→ 0?

Recall that C = dQ
dT

.  As T → 0, the system is settling into its ground state; it is 

impossible for it to reach a lower state, so it is impossible for it to give up any 
more dQ.
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II.  Measuring macroscopic parameters
Recall:
(i)   internal energy:  dE = dQ - dW + µdN

(ii)  entropy dS = dQ
T

,  so dQ = TdS

(iii) we can express all kinds of work symbolically as dW = pdV
"p" stands in for a generalized force, not only pressure
"dV " stands in for a generalized length, not only volume

Thus W =

F ⋅d

∫

So: dE = TdS - pdV + µdN                             'Eq 1'

Now for a moment treat dE  as just a formal mathematical object
that depends on other objects named S,  V ,  and N .  Then:

dE = ∂E
∂S V ,N

dS + ∂E
∂V S ,N

dV + ∂E
∂N S ,V

dN        'Eq 2'

Compare Eq 1 and Eq 2.  If therir LHS's are equal, then their RHS's must be equal:
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                          Measure this in the lab from slopes of these curves:

T = ∂E
∂S V ,N

p = − ∂E
∂V S ,N

µ = ∂E
∂N S ,V

E	  

E	  

E	  

S=klnΩ	  

V	  

N	  
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III. The relationship between volume and # accessible states

So far we only know Ω =Ω E,( ) = const ⋅E/2

                                   energy, #dof
Our goal now: find Ω =Ω(V ).
That is: suppose we change the volume of a container but permit no other
changes (ΔE = ΔN = 0).  How will the Ω of the contained system be affected?

Begin with dE = TdS - pdV + µdN .
Rewrite as: 

dS = 1
T
dE + p

T
dV − µ

T
dN

So p = T ∂S
∂V E ,N

Plug in S = k lnΩ :

p = T
∂ S = k lnΩ( )

∂V
= kT ∂lnΩ

∂V
→ kT

Δ lnΩ( )
ΔV

.
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Rewrite:

pΔV
kT

= Δ lnΩ( ) = lnΩ2 − lnΩ1 = ln Ω2

Ω1

⎛
⎝⎜

⎞
⎠⎟

Exponentiate:

exp pΔV
kT

⎛
⎝⎜

⎞
⎠⎟ =

Ω2

Ω1

                              'Eq 1'

Conclusion: if you change the volume by ΔV , the #states increases by a factor ~ eΔV .

In general, dS = 1
T
dE + p

T
dV − µ

T
dN

If ΔE = ΔN = 0 (dE = dN = 0) this reduces to

ΔS = p
T
ΔV

ΔQ
T

= p
T
ΔV

Plug this into Eq 1 to get:

Ω2

Ω1

= exp ΔQ
kT

⎛
⎝⎜

⎞
⎠⎟

ΔE=ΔN=0
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IV.  Other kinds of work
Suppose a system's energy E depends on n external parameters xi  (such as
volume, N ,  


B,  etc.)

Let the system be in state "r".
So Er = Er x1, x2,..., xn( )
If the xi  change from xα → xα + dxα ,  then the energy changes from
Er → Er + dEr ,  where

dEr =
∂Er

∂xα
dxα .

α=1

n

∑
Take the negative of both sides:

−dEr = − ∂Er

∂xα

⎛
⎝⎜

⎞
⎠⎟
dxα .

α=1

n

∑

This is the work                 This is the generalized force associated with
done BY the system.          ("conjugate to") parameter α .
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Some external parameters and their generalized forces:
         position dx                            Force F
         volume dV                            pressure p
         electrostatic potential dU       - charge -q
         magnetic field 


B                    magnetic moment m

We can use these pairs in place of any 'pdV" in this course.
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V.  Coefficients of expansion and compressibility

Begin with definitions of terms that relate change of volume ΔV to change of 
temperature ΔT and change of pressure Δp.

For volume V, define: 1
V
∂V
∂T p

≡ β        "coefficient of volume expansion"

Thus: ΔV = βVΔT
Typical values of β  lie in the range 10−6 −10−3  per Kelvin.

For length X, define: 1
X
∂X
∂T p

=α           "coefficient of linear expansion"

Thus: ΔX =αXΔT

To find the relationship between α  and β:



150	  

Suppose a system experiences a ΔT  that causes a ΔV:
V →V ' =V + ΔV
Compute this 2 ways:

Way 1:                                             Way 2:
V ' =V + ΔV                                   V ' = X 'Y 'Z ' = X + ΔX( ) Y + ΔY( ) Z + ΔZ( )
    =V + βVΔT                                                 = X +αXΔT( ) Y +αYΔT( ) Z +αZΔT( )
    =V 1+ βΔT( )                                                = XYZ 1+αΔT( )3

                                        compare, and conclude:

1+ βΔT( ) = 1+αΔT( )3 = 1+ 3αΔT + 3 αΔT( )2 + αΔT( )3

For small ΔT, neglect ΔT( )2 ,  ΔT( )3 .  Then:
1+ βΔT ≈1+ 3αΔT ,  so
β ≈ 3α .

Note: we assumed here that α1 =α 2 =α 3 ≡ α .  There are materials for which the α i

are not equal: "non-isotropic solids."
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Define: - 1
V
∂V
∂p T

≡κ                       "isothermal compressibility"

Thus: ΔV = -VκΔp

And define the reciprocal:

−V ∂p
∂V T

= 1
κ
≡ B                            "bulk modulus"
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I.  How to measure chemical potential µ
II. Describing equilibrium mathematically
III. The directions of heat flow, volume change, and particle transport between
systems approaching equilibrium
IV. The relationship between number of states Ω and number of particles N

Please read Stowe Chapter 13 including Appendix 13A.
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I.  How to measure chemical potential µ

Recall the First Law:
ΔE = ΔQ -ΔW + µΔN
Rewrite:
ΔQ = ΔE + ΔW − µΔN

So µ=- ΔQ
ΔN W =const

→V=const

− ΔE
ΔN

Take ΔN  molecules of known energy E.  For them, ΔE
ΔN

 is known.  Add them

to a solution.  Don't let the volume change.  Measure the amount of heat, -ΔQ,
released by the solution.  This gives µ.
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II.  Describing equilibrium mathematically

Recall thermodynamics equilibrium requires 3 simultaneous conditions:
1.  thermal equilibrium
2.  mechanical equilibrium
3.  chemical equilibrium

Show mathematically that all 3 conditions must hold.
Begin with the First Law:   ΔE = ΔQ -ΔW + µΔN

Recall ΔS = ΔQ
T

,  so ΔQ = TΔS.

Plug in ΔQ = TΔS  and ΔW = pΔV .

ΔE = TΔS − pΔV + µΔN .
Rewrite:

ΔS = 1
T
ΔE + p

T
ΔV − µ

T
ΔN     for any system.
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Now consider 2 specific systems in contact with each other:
A1 + A2 = A0   which has entropy S0.

A1	  

A2	  

The systems can exchange particles (ΔN )
                                          heat (ΔQ)
                                          volume (ΔV )

But the total number N  must be conserved: ΔN1 = −ΔN2

and the total energy E  must be conserved: ΔE1 = −ΔE2

and the total volume V  must be conserved: ΔV1 = −ΔV2
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Suppose the system is in equilibrium.  According to the Second Law:
ΔS0 = 0
ΔS1 + ΔS2 = 0

ΔS0 =
1
T1

ΔE1 +
p1

T1

ΔV1 −
µ1

T1

ΔN1 +
1
T2

ΔE2 +
p2

T2

ΔV2 −
µ2

T2

ΔN2 = 0

ΔS0 =
1
T1

ΔE1 +
p1

T1

ΔV1 −
µ1

T1

ΔN1 +
1
T2

−ΔE1( ) + p2

T2

−ΔV1( )− µ2

T2

−ΔN1( ) = 0

ΔS0 =
1
T1

− 1
T2

⎛
⎝⎜

⎞
⎠⎟
ΔE1 +

p1

T1

− p2

T2

⎛
⎝⎜

⎞
⎠⎟
ΔV1 −

µ1

T1

− µ2

T2

⎛
⎝⎜

⎞
⎠⎟
ΔN1 = 0 at equilibrium       'Eq 1'

Since E1,  V1,  and N1 are independent variables, they can change
independently, so each term must separately = 0.
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At equilibrium:

1
T1

− 1
T2

⎛
⎝⎜

⎞
⎠⎟
= 0    ⇒     T1 = T2       thermal

p1

T1

− p2

T2

⎛
⎝⎜

⎞
⎠⎟
= 0    ⇒     p1 = p2       mechanical

µ1

T1

− µ2

T2

⎛
⎝⎜

⎞
⎠⎟
= 0    ⇒     µ1 = µ2      chemical
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III.  The directions of heat flow, volume change, and particle transfer between systems
approaching equilibrium

The issue: if 2 systems are in contact, but not yet in equilibrium,

1- heat will flow out of the one at higher temperature, into the one at lower temperature.
2- particles will flow out of the one with higher µ, into the one with lower µ.
3- the volume of the one with higher pressure will grow at the expense of the volume of
    the one at lower pressure.

We already showed the first.  Now we show 2 and 3.
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Recall Eq 1:

ΔS0 =
1
T1

− 1
T2

⎛
⎝⎜

⎞
⎠⎟
ΔE1 +

p1

T1

− p2

T2

⎛
⎝⎜

⎞
⎠⎟
ΔV1 −

µ1

T1

− µ2

T2

⎛
⎝⎜

⎞
⎠⎟
ΔN1 > 0  approaching equilibrium

From the First Law, substitute ΔE = ΔQ - pΔV + µΔN

ΔS0 =
1
T1

− 1
T2

⎛
⎝⎜

⎞
⎠⎟
ΔQ1 - p1ΔV1 + µ1ΔN1( ) + p1

T1

− p2

T2

⎛
⎝⎜

⎞
⎠⎟
ΔV1 −

µ1

T1

− µ2

T2

⎛
⎝⎜

⎞
⎠⎟
ΔN1 > 0

Expand the first term:

ΔS0 =
1
T1

− 1
T2

⎛
⎝⎜

⎞
⎠⎟
ΔQ1 −

p1ΔV1

T1

+ p1ΔV1

T2

+ µ1ΔN1

T1

− µ1ΔN1

T2

+ p1

T1

− p2

T2

⎛
⎝⎜

⎞
⎠⎟
ΔV1 −

µ1

T1

− µ2

T2

⎛
⎝⎜

⎞
⎠⎟
ΔN1 > 0

ΔS0 =
1
T1

− 1
T2

⎛
⎝⎜

⎞
⎠⎟
ΔQ1 +

1
T2

p1 − p2( )ΔV1 −
1
T2

µ1 − µ2( )ΔN1 > 0

Again Q1,  V1,  N1  are independent, so the inequality will only be guaranteed if each term is
separately > 0. 
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Conclude: as a system approaches equilibrium (ΔS0 > 0),  it must have simultaneously:

1)  1
T1

− 1
T2

⎛
⎝⎜

⎞
⎠⎟
ΔQ1 > 0

     If T2 > T1,  
1
T1

− 1
T2

⎛
⎝⎜

⎞
⎠⎟
> 0,  then ΔQ1  must be > 0.  Heat flows into System 1

2)  1
T2

p1 − p2( )ΔV1 > 0

     If p1 > p2,  ΔV1  must be > 0; if System 1 has higher pressure, it gains volume.

3)  − 1
T2

µ1 − µ2( )ΔN1 > 0

     1
T2

µ1 − µ2( )ΔN1 < 0;  If µ1 > µ2,ΔN1  must be < 0.  If System 1 has higher µ, 

      it loses particles. 



161	  

 

IV.  Relationship between # states Ω and # particles N

We already know that Ω∝ E/2          where  = dof and E  = energy

We already know that Ω2

Ω1

= epΔV /kT    where ΔV =V2 −V1

Goal: We now show that Ω2

Ω1

= e−µΔN /kT    where ΔN = N2 − N1

Recall the First Law: dE = dQ - dW + µdN
Plug in dQ = TdS
Plug in dW = pdV
dE = TdS - pdV + µdN
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Rewrite:

dS = 1
T
dE + p

T
dV − µ

T
dN                             'Physics Equation'

Compare this to:

dS = ∂S
∂E V ,N

dE + ∂S
∂V E ,N

dV + ∂S
∂N E ,V

dN         'Math Equation'

Notice:   − µ
T
= ∂S
∂N E ,V

Thus: − µ = T ∂S
∂N E ,V

Plug in S = k lnΩ.

−µ = T ∂k lnΩ
∂N E ,V
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Consider a small change ΔN  in the number of particles in a system.
The equation above tells us that

Δ lnΩ( ) = − µ
kT

ΔN

lnΩ2 − lnΩ1 = − µ
kT

ΔN

ln Ω2

Ω1

⎛
⎝⎜

⎞
⎠⎟
= − µ

kT
ΔN

Exponentiate both sides:
Ω2

Ω1

= e
− µ
kT

ΔN
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I.   Equations of state
II.  The equation of state of an ideal gas
III. The equation of state of a real gas
IV. Facts about heat capacities

Please read Stowe Chapter 14.
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I.  Equations of state

Recall the First Law: dE = dQ - dW + µdN .
Consider a diffusionless process, dN = 0.
Recall dQ = TdS
Recall dW  stands for all possible mechanical processes involving generalized forces
∂E
∂xα

 that are conjugate to parameters xα .  Suppose there are n such processes.

Name the generalized forces ∂E
∂xα

≡ Fα .  One example is pressure.  Its conjugate 

xα  is volume.

Rewrite the First Law as:

dE = TdS - ∂E
∂xα

⎛
⎝⎜

⎞
⎠⎟α=1

n

∑ dxα

Substitute and divide by T; solve for dS:

dS = 1
T
dE + 1

T
Fα

α=1

n

∑ dxα
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2 Conclusions:
1
T
= ∂S
∂E V ,N

         We already have this.

Fα = T ∂S
∂xα E

      We will now focus on this.

Definition:
An equation such as this one, that connects a system's temperature T  with
a generalized parameter xα (such as volume, 


B, or length) and with its 

generalized force Fα  (such as pressure, m, or mechanical force F) is called
an equation of state for the system.
The equation is customized to the particular system through the relation
S = k lnΩ,  because Ω is system-specific.
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II.  Equation of state for an ideal gas

Conditions required of an ideal gas:
i)  The gas molecules themselves are pointlike: they occupy no volume.
ii) The molecules have no internal structure: no vibrational degrees of freedom.
iii) The molecules do not interact with each other.
iv) There is no external field: all the energy is kinetic.

We want to solve Fα = T dS
dxα

 for N  gas molecules in volume V .

The "V" is the xα .
Recall S = k lnΩ.

So our goal: to find an expression for Ω(V ).
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Recall ΩN particles = Ωi
i=1

N

∏      for Ωi = #states of a free particle

Recall for each particle, Ωi ∝
VrVp

h3          (slide 46)

and for each particle, Vp ∝ E/2      where  = # dof     (slide 68)
Here for each particle,  = # dof = 3  (px , py , pz )
so for N  molecules in 3 dimensions,  
so ΩN ∝Vr

NE 3N /2     .  Now replace Vr →V    
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So:

 S = k lnΩ∝ k ln V NE 3N 2⎡⎣ ⎤⎦ = k ln E 3N 2{ }+ N lnV⎡⎣ ⎤⎦
∂S
∂xα

= ∂S
∂V

= kN ⋅ 1
V

Also Fα = p

Plug these into Fα = T dS
dxα

:

p = T ⋅ kN ⋅ 1
V

pV = NkT             The equation of state for an ideal gas, "the Ideal Gas Law"
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III.  Equation of state for a real gas

Conditions for a real gas:
i)  The gas molecules are not pointlike: altogether 1 mole occupies a volume b
ii) The molecules still have no internal dof's
iii) The molecules do interact with each other.  They are electrically neutral but
polarize, so they have a weak attraction.
iv) There is still no external field.

Begin with the Ideal Gas Law: pV = NkT

Divide both sides by #moles present.  Recall 1 mole = 6.023×1023  molecules.

p V
moles

= Nk
moles

T

Define v ≡ V
mole

Define R ≡ Nk
mole

    "The universal gas constant" = 8.31J /K -mole
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pv = RT
Now correct this to reflect the physical conditions:
1) The true volume available to a mole is not v but actually v -b.

2) The true pressure is not p but p + a
v2 .

Motivate (2):
Consider a sphere of gas.  
Any molecule in the interior is surrounded by molecules on all sides, 
so it feels attracted approximately equally in all directions ⇒ no net attraction.
Any molecule on the surface is attracted inward, because there are no 
molecules outside it to balance the pull.
So pobserved = pactual − pdue to unbalanced attractions

pdue to unbalanced attractions ∝
#molecules
unit volume

 on surface, attracted inward⎛
⎝⎜

⎞
⎠⎟ ⋅

#molecules
unit volume

 on next "layer" in, doing the attracting⎛
⎝⎜

⎞
⎠⎟

pdue to unbalanced attractions ∝
N
V

⎛
⎝⎜

⎞
⎠⎟ ⋅

N
V

⎛
⎝⎜

⎞
⎠⎟

So pactual = pobserved + pdue to unbalanced attractions = p + constant
v2



172	  

Plug the corrections in, to get:

p + a
v2

⎛
⎝⎜

⎞
⎠⎟ v − b( ) = RT        

The equation of state for a real gas, the van der Waals equation of state


