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Physics 301: Thermodynamics and Statistical Mechanics
Reading assignment due by next class:
1) Handout on "The Nature of Thermodynamics", available on the class web site
2) Stowe Chapter 5: "Internal Energy and Equipartition."  
Don't confuse "parts" with "chapters."
It will be assumed that you are familiar with the material in Stowe Chapter 2, 
Sections A, B, C, E, F, G, and H.  These will not be explicitly covered in the lectures.
But if you have questions about these sections, do not hesitate to ask!

Outline of Lecture 1:
I. The subject matter of thermodynamics
II. Thermodynamics variables
III. Internal energy
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I. The subject matter of thermodynamics
In physics we study 3 core subjects:
                                                    Subject Matter                                New Law
1) Mechanics (classical or QM)    the dynamics of  particles               Newton/Lagrange/Hamilton, 
                                                    acted on by forces                          Schroedinger

2) E&M (classical or QM)            the dynamics of fields that             Maxwell
                                                     mediate the forces   

3) Thermo and Stat Mech             any system that is macroscopic     No new law
                                                     i.e., involves a large number of
                                                     objects    

Note Thermo and Stat Mech differs from (1) and (2) in that it
(i) often does not predict specific numerical values for observable quantities
(ii) frequently sets limits (inequalities) on physical processes                
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II. Thermodynamic variables
Recall from Physics 160 that thermodynamics investigates relationships among
quantities such as energy, volume, temperature, entropy, and so forth.

Why those?

Typically we study systems that may have 1023  particle coordinates.  That's the number
of particles in a liter of water.
Thermodynamics considers things that we want to measure, that occur in groups,
for example: 
      atmospheres
      stellar interiors
      refrigerant particles
      plasmas

The particles under consideration are in motion.  The physical size of our instruments
leads to inertia, resistivity, etc, that limit the characteristic time and characteristic distance

⇓
  

of measurements.                                                               precision
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Contemporary standard for short timescale measurements: 10−12  seconds
Typical timescale for observable changes due to thermal motion of particles: 10−15  seconds
So, compared to the timescale of motion of the system we want to observe, our measurement
is approximately static.
Static does NOT mean "motionless."  
Static means: "averaged over a time that is long, compared
to characteristic times in the system being measured.

That is: we measure properties that change over times and distance scales that are large
relative to atomic oscillation periods and distances.

Properties whose changes are not zeroed out by averaging are called 
thermodynamic variables.



5	

Thermodynamics uses the thermodynamic variables to study the consequences of 
changes in the atomic coordinates that are not explicitly in the macroscopic description
of the system.

"Atomic coordinates" includes angular momenta, position, linear momenta, etc., 
of the individual atoms.
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III. Internal energy
Recall the definition of energy --- not just internal energy:
A system (or object) has energy if it has the capacity to cause change.

Energy transfer via a macroscopic ("thermodynamic") variable is called Work.
(Remember dW = -P ⋅dV  for work done on a system by pressure and volume change)

Energy transfer via a change in hidden atomic coordinates is Heat.

Notice that the thermo variable (Work) reflects the consequences of changes to the
microscopic variable (Heat).  Heat is only measurable by converting a sample of
it into work...for example, making a column of mercury rise (dV ) in a thermometer.

Definition of internal energy: the sum of the energies of the individual elements of
a system...as opposed to the energy associated with the center of  mass.
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Facts about internal energy:
1) Internal energy can include kinetic 
         - for example, translational motion of electrons in a metal, or rotational motion
           of molecules in a liquid
and it can include potential energy.
         - for example, stored energy of "stretched spring" electric forces between nuclei
           in a lattice.
2) On average, 1/2 of a system's internal energy is kinetic, and 1/2 is potential.

This is a special case of the Virial Theorem, 2 T = −

Fi ⋅
ri .

i=1

N

∑
Demonstrate this:
Consider a solid made of N particles.

Each particle is connected by a spring-like potential U, so its U = 1
2
kri

2.

Each particle has momentum pi .
Notice that both pi  and ri  are bounded: they cannot become arbitrarily large.
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Define a function S ≡ pi
i
∑ ⋅ ri .

Calculate dS
dt

= (pi
i
∑ ⋅ ri + p ⋅ri )            [leaving vector arrows off, for simplicity]

Time-average  this over some interval τ :

dS
dt
⇓


= pi ⋅ ri
i
∑ + pi ⋅ri

i
∑                        "Eq 1"

1
τ

dS
dt0

τ

∫ dt

⇓
 

S(τ )− S(0)
τ

Because pi  and ri  are bounded, S  is bounded, so we can choose a long enough

interval τ  that S(τ )− S(0)
τ

→ 0.

Because the LHS of Eq 1 equals zero, the RHS must equal zero.  Then:
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pi ⋅ ri
i
∑ = − pi ⋅ri

i
∑

                                              Use kinetic energy T = m
r2

2
= pi ⋅ ri

2
                                              and F = ma = p

2 Ti
i
∑ = − Fi ⋅ri

i
∑

                                              Recall Fi = −

∇Ui = −


∇ kri

2

2
⎛
⎝⎜

⎞
⎠⎟
= −kri

                  − −kri( ) ⋅ri
i
∑

                                              But kri ⋅ri = 2Ui

2 Ti
i
∑ = 2 Ui

i
∑

Total  T = Total  U
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I.  Degrees of freedom
II. A general way to count degrees of freedom
III. Some facts about degrees of freedom
IV. Changing a system's internal energy
V. Work

Please read Stowe Chapter 6.
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I.  Degrees of freedom ("DOF")

"Degrees" means "kinds" of freedom, not thermal degrees Celsius.

Several equivalent definitions of DOF for a system:
1) (Stowe's definition) The number of ways that the system can store energy, including
information about the number of components (particles) it has and the number of
dimensions each is free to move in.
2) The number of independent variables needed to describe the energy of the system.

Why DOF are important:  
they affect the internal energy, heat capacity, and thermal properties (for example
conduction, insulation of solids).
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II. A general way to count degrees of freedom
Consider first, free molecules (no lattice).  Each molecule has N component atoms (N>2).
# position coordinates: 3N
# linear momentum coordinates: 3N

⎫
⎬
⎭

 These are the 6N phase space coordinates of the system.

Transform from this arbitrary coordinate system into the center of mass system.
The # of position and momentum coordinates does not change, but now it can
be separated cleanly between coordinates of the center-of-mass and internal coordinates.

# position coordinates xi = 3N                    # momentum coordinates pi = 3N
3 are due to COM location                           3 are due to COM momentum
3 are due to COM angular orientation          3 are due to COM angular momentum

To make everything in this column              Similarly, there must be (3N-6) vibrational
sum to 3N, there must be (3N-6)                  momenta.
vibrational separations.
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Thermodynamics counts degrees of freedom to be those xi  and pi  that contribute
to the internal energy with terms ∝ qi

2.
So not all of these contribute in every situation.  
For example: consider the case of a molecule in a region free of external fields.
In that case the COM location makes no difference nor does the COM angular 
orientation.  So the total # of DOF (= total number of contributors to internal energy)
is:
3 due to COM p
3 due to COM 


L

(3N-6) due to vibrational pi

(3N-6) due to vibrational xi

total :  6N - 6 degrees of freedom when there is no external field.
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Modifications for special cases:
(i)  When the molecule is in an external field: add 6 DOF
(ii) When N=2 ("dumbbell"), and an external field is present:

total #xi = 3N                             total #pi = 3N
3 :  COM location                        3: COM momentum                     DO NOT
2:  COM angular coord.               2: COM angular momentum        CONTRIBUTE 
Total for this column must           Similarly, 3N-5 vibrational           IN FIELD-FREE
sum to 3N, so conclude:              momenta.                                     CASE.
(3N-5) vibrational separations

Thus total #DOF when N=2, in an external field is:
3+3+2+2+(3N-5)+(3N-5)=3+3+2+2+1+1=12

Total #DOF when N=2, in NO external field is:
3(COM mom)+2(COM ang mom)+(3N-5, vib mom)+(3N-5, vib sep)
=3+2+1+1=7 
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(iii) When N=1, and an external field is present:

total xi = 3N                             total pi = 3N
3 :  COM location                     3: COM momentum                      DOES NOT
0:  COM angular orientation     0: COM angular momentum         CONTRIBUTE
Conclude: 3N-3 vibrational       Similarly, 3N-3=0 vibrational       IN FIELD-FREE
separation, but this is 0             momenta.                                      CASE
for N=1.

Total #DOF for N=1, in an external field:
3+3=6

Total #DOF for N=1, with no external field: 
3

(iv) When atoms are locked into a lattice, there is no contribution from the COM
at all.  Then #DOF = 2(3N - 6) = 6N -12.
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III. Previews of coming attractions: some facts about degrees of freedom
1) The Equipartition Theorem
Every degree of freedom whose energy takes the form bq2  
                                                                constant      generalized coordinate
                                                                                   like x or p

contributes on average an energy E = 1
2
kT  to the total internal energy

of the system.
                 k = Boltzmann's constant=1.381 ×10−23  J/K
                 T = temperature in Kelvin K
We will prove this in Chapter 12.
2) Temperature is a measure of the average internal energy stored in each
particle, averaged over all degrees of freedom (not just those related to
kinetic energy!) whose energy has the form bq2.

i.e., T∝ Average energy per particle
#DOF per particle

If a DOF provides energy that is potential, the energy must be measured relative
to the bottom of that particle 's own potential  well.
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3) Sometimes energy is added to a system but the temperature does not change.
This is due to 2 phenomena:

(i) new degrees of freedom are opening up, and the energy is flowing into them
while maintaining the average energy per DOF unchanged. 
        Example of this from classical physics phase changes:     
        Begin with N rigid diatomic molecules in a potential.
        Add enough energy to break every bond.  Now there are 2N monatomic molecules.
        #DOF before: 3N(kinetic energy modes)+3N(potential energy modes)=6N
        #DOF after: 3⋅2N(kinetic energy modes)+3⋅2N(potential energy modes)=12N
        So even if the amount of internal energy doubles, the temperature will not change.
        We will examine a QM example in Chapter 27.

(ii) particles that were at the bottoms of their personal potential wells (i.e., U=0) receive
so much energy that they are completely unbound, so relative to their new reference point 
(KE=0) they are still at zero.  This is also a phase change.
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IV. Changing a system's internal energy

3 ways:
1) work done on or by the system
2) heat transferred into or out of the system
3) particles transferred into or out of the system

The next sections explain each of these.
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V.  Work

Recall the definition: W ≡

F ⋅ds

s1

s2

∫

                                       Force       displacement of some parts of the system
The displacement can be
i) a macroscopic displacement ("piston compressing gas")
ii) a microscopic displacement ("electrostatic force shifting electrons in a metal)

We schematically represent all  types of work with piston drawings just for 
simplified illustration. 

When an external force does work ON a system, (e.g. compresses a gas),
the system's energy INCREASES.
(e.g. the gas molecules hit walls that are moving toward them, and so 
gain some of the walls' energy)
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I.  Heat
II. Particle transfer
III. Exothermic effects and the chemical potential µ
IV. The First Law of Thermodynamics

Please read Stowe Chapter 7.
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I.  Heat
When a system's internal energy changes but its external parameters (volume, pressure, etc)
do not change, we say it has exchanged  heat  ("undergone a thermal interaction").
So heat is observed indirectly as
"ΔE of a system when there is no ΔWork" or "internal energy in transit".

Mechanisms for heat transfer:
1) conduction: collisions between individual particles.  Microscopic motion
of particles.  On average, in each collision, the more energetic particle transfers energy to
the less energetic one.
2) convection: macroscopic exchange of particles in a way that causes no net work.
3) radiation: emission of energy waves (E = hν ) or emission of particles (photons) that
convey energy (E = pc)

The probability of radiating is proportional to the radiator's acceleration (which is
proportional to its internal energy).
So on average, a more energetic body will radiate more than a less energetic one, so their
energies will equalize.
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II.  Particle transfer
Why mixing 2 systems --- a chemical reaction --- can be exothermic.
For every element of a system (i.e. for every particle):

Stored energy = kinetic + potential

Its PE is measured relative to the bottom of its own potential well (i.e. the
potential that it feels due to interaction with its neighbors).  This well is 
defined by the other particles in its system.
The universal zero-energy reference for all systems is conventionally the 
PE of a particle that is not interacting with any other particles ("it is 
located at infinity and there is nothing else out there").

So the potential wells of 2 particles in different systems ("chemistry beakers")
can be very different, because they depend on the local environments.
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↑
E

x→

µ

0
 

Two substances.  Typical particles in each experience 
very different local potentials.
Consider this particle.  Its total energy is
E = KE + PE

   1
2
mv2



+ 1
2
kx2 + µ

 

 

 

Call this ε thermal ,  the only
part of the total E that is
reflected in the 
temperature.

Call this the chemical potential of the 
species, the average value of its PE = 0
point above the reference E = 0 point.
Average because the environment that
generates the potential is in motion, so
the exact shape of the well fluctuates.
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Suppose we mix 2 previously isolated systems to produce a "diffusive interaction."
Watch particle "A":

A X
Y Y

YY
X

X
X
AY+

A
E1

A

E2

A's ε thermal = E1  here,
where the well shape is
generated by attraction/repulsion
between A and the X's.

A's ε thermal = E2  here,
where the well shape is
generated by attraction/repulsion
between A and the X's and Y's.

E2 − E1 =  energy released or absorbed and could be chemical, nuclear, electrostatic...
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Facts about the chemical potential µ:

1) The Equipartition Theorem only really concerns the partition of ε thermal ,  not µ.
2) If you are considering an isolated  system, you can let µ=0.
"Isolated" means no exchanging particles with any other system.
3) If the particle interactions that form the well are:
           • attractive, then the µ  is negative
           • repulsive, then the µ  is positive

To see this, recall:

                                                                free particles (experiencing no force) or
                                                                particles experiencing repulsive force

                                                                bound particles (experiencing attractive
                                                                force
and µ  is defined as µ ≡ well minimum E( )− reference E( )

↑
E

x→E = 0
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4) µ  depends on anything that can shape the well, i.e, affect the force between particles,
including:
Temperature T
Volume V
Number of each type of particle present, Ni

5) For nuclear reactions, µ  ~ MeV
    For chemical reactions, µ  ~ eV
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III. More about exothermic effects and µ

A X
Y Y

YY
X

X
X
AY+

A
µ1 = E1

A

µ2 = E2

E2 − E1 =  energy absorbed in general
µ2 − µ1 =  a negative number, so energy is actually liberated in this case.
The energy can be ascribed to the kinetic energy of the environment atoms
as they squeeze closer together to create the stronger bonds.
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IV.  The First Law of Thermodynamics
We will do this carefully to get sign conventions right.  
Recall the ways to increase the internal energy E  of a system:
1) Add heat +Q to the system
2) Do work +W '  on the system  (W '  is work done by an external force, on a system)
3) Change #particles N  in system

The change in energy E  is:
dE = dQ + dW '+ µdN

                                property of external force
property of system

To convert this equation so all the variables refer to the system, define W  (no prime)
as "work that the system does on an external object: W ≡ -W '. 
Then 
dE = dQ − dW + µdN
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If there are N species of particles involved, and if the system is able to do M
different kinds of work (due to different forces), then:

dE = dQ − dWj + µidNi
i=1

N

∑
j=1

M

∑           This is the First Law of Thermodynamics
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I.  Exact and inexact differentials
II. State variables, processes, and differentials
III. Introduction to Chapter 7: "The States of a System"

Please read Stowe Chapter 2, Section D only.
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I. Exact and inexact differentials

Overview:
(1) Physics Goal: to identify quantities that are conserved.
These are quantities whose integrals are path-independent.

(2) Math trick: it turns out that you can identify these quantities
by the properties of their derivatives.

g(x, y)dx + h(x, y)dy is conserved if dg
dy

= dh
dx

.

A quantity with this property is called "an exact differential."
Otherwise it is an "inexact differential."

Next we demonstrate this...
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Consider a quantity dF = g(x, y)dx + h(x, y)dy.
Note that there may not necessarily be an F  that is the integral of this.

In general, dF   is path ∫ dependent.  

That means: there is no associated conserved quantity F.
Example of path-dependent and path-independent cases:

↑
y

x→

1,1( ) 2,1( )

1,2( ) 2,2( )

Path 1 is green.
Path 2 is red.
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Path dependent case:

Suppose dF =αdx + β x
y
dy =αdx + βxd ln y( )

dF
path1
∫ = α dx

x1=1
y=1, fixed

x2=2

∫ + βxd ln y( )
y1=1
x=2, fixed

y2=2

∫ =α 2 −1( ) + β ⋅2 ⋅ ln2 − ln1( ) =α + 2β ln2

dF
path2
∫ = βxd ln y( )

y1=1
x=1, fixed

y2=2

∫ + α dx
x1=1
y=2, fixed

x2=2

∫ = β ⋅1⋅ ln2 − ln1( ) +α 2 −1( ) =α + β ln2

If dF  were replaced by dG = dF
x

= α
x
dx + β

y
dy,  the integral would be path independent.

That is, the conclusion would be that "G  is conserved."

The way to guarantee path independence is to insist that the order of traversing x and y
does not matter.  This is equivalent to requiring:
∂2F
∂x∂y

= ∂2F
∂y∂x
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To get an alternative, equivalent form of this requirement, note:

If F  exists, then dF = ∂F
∂x

dx + ∂F
∂y

dy

                    call this "g"       call this "h"

Then require ∂g
∂y

= ∂h
∂x

A quantity that produces this condition is called "an exact differential."
Otherwise, it is an "inexact differential."

The Stowe book uses the notation dQ  (with a bar through the d)
to indicate inexact differentials.
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II.  State variables, processes, and differentials
Recall that thermodynamics describes systems that are macroscopic, and measurements of macroscopic
features naturally require time intervals that are long relative to the period of fluctuations of the system.

"Long time observations" imply that the systems under observation are static, in equilibrium.

Some of the variables that can characterize a macroscopic state:
N                     #particles
µ'                     chemical potential per particle
V, L, A            volume, length, area
P                      pressure

M                     magnetization

H                     magnetic field strength
τ ,σ                   tension, surface tension

P                      electric polarization

E                      electric field
T                      temperature
S                       entropy
and more..........enthalpy, Gibbs Free Energy, Helmholtz Free Energy...... 
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By definition, the state variables contain no information about the history ("path")
of a system.

Other variables characterize a process rather than a state, for example:
   Work: energy transferred through application of a force
   Heat: energy transferred in the absence of work
They may be combined in different ways ("paths") to produce the same final state.

Exact differentials refer to quantities that can be determined unambiguously
(no path dependence) by examining the state (for example, dE or dN)

Inexact differentials refer to quantities that cannot be determined unambiguously 
for a state.  For example:
    more than one combination of Work and Heat can be used to produce a particular
    Energy state.  Given some E, you cannot know what the Q and W were that
    produced it.  So dW and dQ are inexact and we should call them dW and dQ.
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III. Preparing for Chapter 7: the states of a system

We're aiming to introduce the Fundamental Postulate of Statistical Mechanics,
which is:

"An isolated system in equilibrium is equally likely to be in any of its accessible states."

To understand that, we need to know:
1) what is a quantum state?
2) how do we calculate the probability of being in a particular quantum state, so that
we know whether two are "equally likely"?
3) what is equilibrium?

Those are the next 3 topics.
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I.  Phase space and quantum states
II. Multiparticle states

Please read Stowe Chapter 3.



39	

 

I.  Phase space and quantum states
Recall the Uncertainty Principle from QM:

Δx ⋅ Δpx ≥

2

                       = 1.06 ×10−34 Joule − sec
                Δpx  is the precision to which one can know a specific particle's momentum p
            Δx is the precision to which one can know its position x

This is not due to failure of measurement tools.  It results from the fact that the "particle"
is also a "wave," and a wave does not have a precisely defined position.

To see where the Δx comes from, recall that the position of the particle is spread over
its wavelength: x

↓

←Δx→
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The Δp also comes from the wave property of the particle but is a little harder to see
directly.  The wave is a packet made of a superposition of wave trains, each with a
different value of "p" (think Fourier composition).
So the packet does not have one unique p, but a combination of them that spans the
range "Δp."
If we plot x versus px  for the particle, the region of uncertain product Δx ⋅ Δpx  has constant
area: the better you measure one, the worse you measure the other.

Example situations: both rectangles have the same area.

Similar relationships hold for Δy ⋅ Δpy ≥

2

 and Δz ⋅ Δpz ≥

2

.

x

px
px

x

 

↑
 / Δx
↓  

↓
 / Δx
↑

Δx
←Δx→
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Generalize from 2D-space (x, px ) to 6D-space (x, y, z, px , py , pz ).
-This is called "phase space"
-In phase space, the minimum size 6-dimensional box specifying a particle's
position and momentum is given by

ΔxΔyΔzΔpxΔpyΔpz ≥
3

8
.

Note, 
3

8
= 1.5 ×10−103.  Stowe approximates this as h3,  which is 2910 ×10−103.

So we will also use h3  as the volume of 1 cell in phase space.
So if a particle is known to be in some region defined by:
0 ≤ x ≤ x0

0 ≤ y ≤ y0

0 ≤ z ≤ z0

0 ≤ px ≤ px0

0 ≤ py ≤ py0

0 ≤ pz ≤ pz0

Then there is a finite number of cells ("quantum states") available to it:



42	 

A quantum state is the minimum volume in phase space that can be occupied by a particle.
The number of distinct quantum states available to that particle is given by:

total 6D volume
volume of 1 quantum state

=
x0y0z0 ⋅ px0py0pz0

h3

                                         Call this Vr     Call this Vp

So #quantum states ≈
Vr ⋅Vp

h3

The "≈ " indicates the fact that we have used h instead  of   / 2.
But  for  most  physical  systems,  the #  is huge,  like 10X  where X  is 24 digits long.
So the h-approximation is negligible, and we now replace ≈  with =.

If Vr  and Vp  are differentially small, let

Vr = d
3r = dxdydz  and  Vp = d

3p = dpxdpydpz

Then the number of quantum states in a differentially small volume dVrdVp  is:

 1
h3 dx ⋅dy ⋅dz ⋅dpx ⋅dpy ⋅dpz
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A conclusion: if "q" represents any phase space coordinate (x or p),
then the # of quantum states scales linearly with dq.  Thus
#quantum states in interval dq( )  ∝ dq.

To find the total number of quantum states in a finite (r,p) volume, you
technically should sum them (because they are discrete), 
but you can approximate that sum by an integral (as if they were continuous).

Then the #quantum states in a finite volume is 1
h3 dVr dVp

r , p
∫∫

= 1
h3 dVr

r
∫


dVp
p
∫


          Vr     p2 dp
p
∫ sinθ dθ dφ

θ ,φ
∫
  

                                      4π
So the total number of quantum states in a finite volume is

4πVr
h3

⎛
⎝⎜

⎞
⎠⎟ p

2 dp
p
∫                                                                        "Eq 1"
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Consider a special case: if the particle is NOT in a potential, then all of its
energy ε  is kinetic.  If the particle also has v≪ c, we use the classical
relationship between KE and momentum, 

ε = p2

2m

Then dε = 2p
2m

dp = pdp
m

So mdε = pdp

Also p = 2mε( )1
2

Recall  Eq. 1, and substitute these in:

# of quantum states in a finite volume (r, p) = 4πVr
h3

⎛
⎝⎜

⎞
⎠⎟ p

p
∫ ⋅ pdp

                                                                                    2mε( )1
2         mdε

= 4πVr
h3

⎛
⎝⎜

⎞
⎠⎟

ε
∫ 2mε( )1

2 mdε

 
    # of quantum states of a free, non-relativistic particle confined to volume Vr ,

    and carrying energy ε = 2πVr
h3 2m( )3

2⎡
⎣⎢

⎤
⎦⎥ε

∫ ε 1
2dε
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That was for a special case.  More generally, the particle could be relativistic
or may be confined by a potential.  Then the integral is still over dε  but the
integrand could be different:

# of quantum states for a general particle = g ε( )dε
ε
∫ .

g ε( )  is called the "density of states."  It is the # of accessible quantum 
states per unit energy range dε  centered on ε .
The density of states function encodes information about the environment
(constraints, potential) of the particle, so it essentially characterizes the material
(for example, the orbital structure).  It will be used later on to find things like
total # of electrons in a system, their total energy, and the heat capacity of
their material.
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II. Multi-particle states

Thus far we have referred only to the states of 1 particle.
If the system has >1 particle, each state is a unique permutation of the
particles within 6-dimensional phase space.

Example:  Consider 2 particles, each of which can have 3 states.  The
total number of states of the 2-particle system is 3× 3=9.  Specifically 
these are:

Par/cle	1,	individual	states	 1	 1	 1	 2	 2	 2	 3	 3	 3	

Par/cle	2,	individual	states	 1	 2	 3	 1	 2	 3	 1	 2	 3	

Combined	two-par/cle	system	 1	 2	 3	 4	 5	 6	 7	 8	 9	


