Physics 301 Homework due 16 October 2024

1) Stowe problem 12.2.

2) Consider an ideal gas, the ratio of whose molar specific heats is given by $\gamma = \frac{c_p}{c_V}$.

The gas is thermally insulated and allowed to expand quasi-statically from an initial volume V_i to a final volume V_f .

a) Use the relation, pV^{γ} = constant, to find the final temperature T_f of the gas.

b) Explain why the entropy does not change during the process.

c) Use the fact that the entropy remains constant to calculate the final temperature T_f of the gas.

3) Liquid mercury at atmospheric pressure and 0°C has a molar volume of 14.72 cm³ / mole and a specific heat at constant pressure of $c_p = 28$ Joules/mole/degree. Its coefficient of volume expansion is $\beta = 1.81 \times 10^{-4}$ / degree, and its compressibility is $\kappa = 3.88 \times 10^{-12}$ cm²/dyne. Find its specific heat c_v at constant volume.

- 4) Stowe problem 12-3, parts a, b, and d.
- 5) Stowe problem 12-10.