\[H = \frac{\dot{r}^2}{2\mu} + \frac{1}{2} \mu \omega^2 r^2 = H_x + H_y + H_z \]

So solutions factorize in Cartesian coordinates:

\[\Psi(r^2) = \Phi(r) \Theta(\theta) \Phi(\phi) \]

\[E = (n_x + n_y + n_z + \frac{3}{2})\hbar \omega \]

To understand shell structure we need spherically symmetric solutions:

\[\Psi(r^2) = \frac{U(\phi)}{\nu} Y_{m}(\theta, \phi) \]

Define dimensionless variables

\[\xi = \frac{\mu \omega}{\hbar} r \quad \chi = \frac{2E}{\hbar \omega} \]

to get radial equation

\[U'' - \frac{(\ell + 1)}{\xi^2} U' - \xi^2 U = -2U \]

at small \(\xi \)

\[U \sim \frac{\xi^{\ell+1}}{\ell + 1} \quad \xi \rightarrow 0 \]

at large \(\xi \)

\[U \sim \xi^2 e^{-\xi^2/2} \quad \xi \rightarrow \infty \]

Substitute

\[U = \xi^{\ell+1} e^{-\xi^2/2} \Phi(\xi) \]
lec 8

\[u' = \left[(e+1)^{e_2} - 2^{e_2} \right] e^{-e_2} f + g e^{-e_2} f' \]

\[= g^{e_2} \left(e^{-e_2} \right) f + g' \]

\[u'' = g^{e_2} \left(e^{-e_2} \right) \left(\frac{e+1}{e} - 2 \right) f + 2 g' \left(\frac{e+1}{e} - 2 \right) + g'' \left(\frac{e+1}{e} - 2 \right) \]

\[= f + \left(\frac{e+1}{e} - 1 \right) \]

lead to

\[(e-2e+3)f + 2f' \left(\frac{e+1}{e} - 2 \right) + f'' = 0 \]

power series solution let \(f = \sum_{n=0}^{\infty} C_n e^{n} \)

\[f' = \sum_{n=0}^{\infty} (n+1) C_{n+1} e^{n} \]

\[f'' = \sum_{n=0}^{\infty} (n+2)(n+1) C_{n+2} e^{n} \]

\[I \left(\lambda - 2e - 3 \right) C_n e^{n} + 2(n+1) C_{n+1} e^{n} \left(\frac{e+1}{e} - 2 \right) \]

\[+ (n+2)(n+1) C_{n+2} e^{n} \]

\[f = 0 \]

term with \(\frac{e+1}{e} \):

\[\sum_{n'=1}^{\infty} 2(n'+2)(n'+1) C_{n'+2} e^{n'} \]

\[= \sum_{n'=1}^{\infty} 2(n'+2)(n'+1) C_{n'+2} \]

\[n' = n-1 \]
continuing with $\frac{e^{-1}}{s}$ term

$$\frac{2}{s}e^{-1} + \sum_{n=0}^{\infty} 2(2n+2)(n+1) C_{n+2}$$

- s term:

$$\sum_{n=0}^{\infty} \frac{2(2n+2)}{n+1} C_{n+2} = -\sum_{n=0}^{\infty} 2n C_n g^n$$

$$- \sum_{n=0}^{\infty} 2n C_n g^n$$

then we have

$$\frac{2}{s}e^{-1} + \sum_{n=0}^{\infty} \left((n+2)(n+1)^2 C_{n+2} - 2n C_n \right)$$

$$\left[2(n+2)(n+1) + (n+2)(n+1) \right] C_{n+2} = 0$$

Since g cannot be eliminated from C_1 term,

$$C_1 = 0.$$ Then

$$\sum_{n=0}^{\infty} \left((n+2)(n+3) C_n + (n+2)(n+1) \right) C_{n+2} = 0$$

correcting C_{n+2}, C_n. $C_1 = 0$ implies all odd coefficients are zero.
Let s

Recursion relation is

\[
\frac{c_{n+2}}{c_n} = \frac{2n+2l + 2}{(n+2)(n+3+2l)} \to \frac{2}{n+1}
\]

At large n, this is the same as expansion of

\[
\delta^2 = \sum_{\text{even}} \frac{s_{\frac{n}{2}}}{(\frac{n}{2})!} s_{\frac{n}{2}} - \frac{2}{\text{reursion } n+1}
\]

Some must terminate and

\[
\lambda = 2(n+1+3/2) = \frac{2E}{\hbar} \quad n = 0, 1, 2, \ldots
\]

or $n = 2n_\perp, \ n = 0, 1, 2 \ (\neq \text{radial node})$

Sketch of radial wave function:

![Sketch of radial wave function](image-url)
On the you find that states with same \(L \) are degenerate. Just as for 1/2 potential r^2 potential has classically closed orbits and quantum dynamical symmetry.

You find closed shells 2, 8, 20, 40 giving first 3 magic numbers.

To do better add spin-orbit term.

Nuclei with closed shells have \(\tilde{J} = 0 \) (\(\frac{A}{2} N \) notation)

\[
16, 40, 80, 208
\]

Nuclei with \(n \) nucleon nuclei have \(\tilde{J} = \frac{1}{2} \)

\[
15_N, 39_{K}, 207_Pb
\]