Capacitance

I. Capacitor
A device for storing charge and energy in an electrical circuit. 2 conductors, separated in space with a potential difference across them.

Simplest geometry is 2 plates (separated) ignore non-uniform "fringe" field near edges.

\[V(x) = V_0 - E \cdot x \]

\[V(0) = V_0 \]

\[\nabla \phi = \frac{V_0}{d} \]

\[E = \frac{V_0}{d} \]
Surface charge: Gauss's surface box of side a and enclosing region of plate at $x = d$.

\[
\int \mathbf{E} \cdot d\mathbf{S} = -E x = \frac{\sigma a}{\varepsilon_0}
\]

Similarly,

\[
\sigma_{x=0} = \frac{V_0}{d} \varepsilon_0
\]

Change on plate $\pm Q$ with

\[
Q = \sigma \varepsilon \left(\frac{x \varepsilon_0}{d} \right) V_0 = C V_0
\]

Debye's capacitance. Constant C depends only on geometry of conductors and material in gap. Here, gap is vacuum.

Capacitance $C_{ii} = \frac{a \varepsilon_0}{d}$
Capacitor Stores Energy

\[\begin{align*}
+Q & \quad -Q \\
\vdots & \quad \vdots \\
\Delta & \quad \Delta x \\
\epsilon & \quad \epsilon
\end{align*} \]

Move charge \(\Delta Q \) from right side and transfer to left.

External Work = \(\Delta Q \cdot Ed = +\Delta U \)

Here it \(w \) is \(+\Delta U \) because it is external work done against the field.

\[E(Q) = \frac{\phi}{\epsilon_0} = \frac{\phi}{\epsilon_0} \]

\[\Delta Q \cdot Q \left(\frac{d}{\epsilon_0} \right) = \Delta U \]

\[\frac{du}{dQ} = \frac{Q}{C} \]

Start from \(Q = 0 \) and integrate:

\[U(Q) = \int Q \frac{\phi d\phi}{C} = \frac{1}{2} \frac{\phi^2}{C} \]

\[U_{stored} = \frac{1}{2} \frac{\phi^2}{C} = \frac{1}{2} CV_0^2 \]
we can also rewrite in terms of E^2 between plates:

$$U_c = \frac{1}{2} c (dV_0)^2 = \frac{1}{2} \left(\frac{\varepsilon_0 a}{d} \right) d^2 E^2$$

$$U_c = \frac{1}{2} \varepsilon_0 (a d) E^2$$

- Volume of capacitor.

*physical interpretation: Energy stored in E field which has density/Volume

$$\frac{U}{V} = \mu = \frac{1}{2} \varepsilon_0 E^2$$

Wow!
Example: Self energy of sphere of radius a, charge Q:

\[U = \frac{1}{2} k \frac{Q^2}{a} \]

\[E(r) = \frac{kQ}{r^2} \quad r > a \]

\[U = \int d^3r \cdot \frac{1}{2} \varepsilon_0 E^2(r) \]

\[= \frac{4\pi \varepsilon_0}{2} \int_a^\infty dr \left(\frac{kQ}{r^2} \right)^2 \]

\[k = \frac{1}{4\pi \varepsilon_0} = \frac{kQ^2}{2} \int_a^\infty dr \frac{dr}{r^2} = \frac{1}{2} k \frac{Q^2}{a} \]

\{ Interpretation of field energy density is consistent. \}
Example: Force between capacitor plates

\[C_{11} = \frac{\varepsilon_0}{x} \quad \text{separation } x \]

\[\frac{dC}{dx} = -\frac{\varepsilon_0}{x^2} = -\frac{C}{x} \]

\[U = \frac{1}{2} \frac{q^2}{C} \]

\[F_x = -\frac{dU}{dx} = -\frac{1}{2} \frac{q^2}{C^2} \left(-\frac{1}{x^2} \right) \left(-\frac{C}{x} \right) = -\frac{U}{x} \]

Attractive force

\[U = \frac{1}{2} C V^2 \]

\[F_x = -\frac{dU}{dx} = +\frac{U}{x} \]

Repetitive force
Example: Spherical Capacitor

\[C = \frac{Q}{V} \]

\[V(b) - V(a) = -\int_a^b E \cdot dr = -\int_a^b \frac{kQ}{r^2} \, dr \]

\[= kQ \left(\frac{1}{b} - \frac{1}{a} \right) \]

define \(V(b) = 0 \),

\[V = V(a) = kQ \left(\frac{1}{a} - \frac{1}{b} \right) \]

\[C = \frac{4\pi E_0 \left(\frac{ab}{b-a} \right)}{\varepsilon} \]

Capacitance is always \(\propto E_0 \times \text{(length)} \)

Take \(\lim b \to \infty \), \(V = \frac{Q}{4\pi \varepsilon_0 a} \)

\[C = \frac{4\pi\varepsilon_0 a}{\varepsilon} \quad \text{Capacitance of single conductor.} \]
Capacitante și circuituri

Circuit element symbol

\[V = V_1 + V_2 \]

Energy conservation

Charge conservation

\[q_1 = q_2 = q \]

\[V = \frac{q}{C_1} + \frac{q}{C_2} = q \left(\frac{1}{C_1} + \frac{1}{C_2} \right) \]

\[\frac{q}{V} = \text{Coeff} = \frac{1}{C_1} + \frac{1}{C_2} \]

\[V_{1} = V_{2} = V \]

\[q = q_1 + q_2 = (C_1 + C_2) V \]

\[\frac{q}{V} = \text{Coeff} = C_1 + C_2 \]

Think of 2 infinite plate capacitors with separation:

\[C_{\text{eff}} = \varepsilon_0 \frac{q^2}{d} + \frac{\varepsilon_0 q^2}{d} = \frac{q^2}{d} (\varepsilon_1 + \varepsilon_2) \]
Dielectrics:

Fill the space between conductors with an insulating material and measure its capacitance. Compare its value with space a vacuum (C_0).

\[\frac{C}{C_0} = k \]

dielectric constant of material

<table>
<thead>
<tr>
<th>Material</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum</td>
<td>1</td>
</tr>
<tr>
<td>air (1 atm)</td>
<td>1.00054</td>
</tr>
<tr>
<td>mica</td>
<td>3-6</td>
</tr>
<tr>
<td>glass</td>
<td>5-10</td>
</tr>
<tr>
<td>water</td>
<td>~ 81 (T dependent)</td>
</tr>
<tr>
<td>strontium titanate</td>
<td></td>
</tr>
</tbody>
</table>

Microscopically:

1. Molecules get induced dipole moment in presence of E.

2. Molecules with permanent dipole moments.

\[\vec{E} = 0 \quad \text{or} \quad \vec{E} \]

- Distorted molecule
- Partially aligned dipoles
Molecular dipole moment measured in Debye, \(D = 3.355 \times 10^{-30} \text{ C.m} \)

atomic charge separation

\[
\text{length} = \frac{p}{e} = \frac{3.355 \times 10^{-30} \text{ C.m}}{1.6 \times 10^{-19} \text{ C}} = 2.10 \times 10^{-11} \text{ m}
\]

\[\approx \frac{1}{5} \text{ Å} \]

\[P(\text{H}_2\text{O}) = 1.8 \text{ D} \]

\[P(\text{NaCl}) = 7.0 \text{ D} \]

\[E \] between capacitor plate, reduced relative to field in vacuum

\[+q \quad -q \quad +q \quad -q \]

\[= \quad +q \quad -q \]

polarized dielectric slab

\[E = E_0 + E' \]

\[= \frac{1}{K} E_0 (E' \propto E_0) \text{ linear} \]

\[q = \sigma \cdot a \]

\[\frac{q}{V} = E \cdot d = \frac{1}{K} \frac{\sigma}{E_0} \cdot d \]

\[C = \frac{q}{V} = K \left(\frac{E_0 \cdot a}{d} \right) = K C_0 \]
free and bound charge

charge separation inside dielectric does not move, but rather remains bound in material.
We rewrite Gauss's law in terms of free charge.

\[E^2 = \frac{1}{k} E_0 \]

Gaussian surface

\[E_0 = \frac{k Q}{r^2} \]

\[\int \vec{E}_0 \cdot d\vec{a} = \frac{1}{k} \left(\frac{1}{4\pi \varepsilon_0} \right) \frac{Q}{r^2} (4\pi r^2) \]

\[= \frac{Q}{k \varepsilon_0} \]

Define \(\varepsilon = k \varepsilon_0 \)

\[\int \vec{E} \cdot d\vec{a} = \frac{Q}{\varepsilon} \]

\(\varepsilon \) called "permittivity"

\(\varepsilon_0 \) called permittivity of free space