COPERNICUS "On the Revolutions of the Heavenly Spheres" 1543

Keppler "A New Astronomy" 1609

Newton "Principia" 1687
"the mathematical principles of natural philosophy"

I. Example: retrograde motion of Mars

II. Uniform circular motion

\[T = \frac{2\pi a}{v} \]
\[a = \frac{v^2}{r} \]

\[x^2 + y^2 = r_e^2 \]
\[\frac{r_e}{c} = \frac{150 \times 10^9 \text{m}}{3 \times 10^8 \text{m/s}} = 500s = \frac{8}{3} \text{ light-minutes} \]
III. Kepler's Laws

1. Planetary orbits are ellipses

\[a = \text{semi-major axis} \]
\[b = \text{semi-minor axis} \]
\[\varepsilon = \text{eccentricity} \]

\[\varepsilon = 0 \] for circle

Planet	\(\varepsilon \)	\(a \times 10^{10} \)	\(T \) (y)	\(\frac{T^2}{a^3} \)
Mercury	0.2	0.179	0.241	1.3
Venus	0.007	10.8	0.615	
Earth	0.02	15.0	1.00	
Mars	0.10	22.8	1.88	
Jupiter	0.09	77.8	11.9	
Saturn	0.06	143	29.5	
Uranus	0.05	290	84.0	
Neptune	0.01	450	165	

Kepler's 3rd Law

\[T^2 \propto a^3 = \text{constant} \]
#3 Equal areas in equal time - Kepler's 2nd Law

\[\text{Equal area} \]

\[\text{at Earth} \]

\[\text{at} \]

IV. Newton's Universal Law of Gravitation:

\[F = G \frac{m_1 m_2}{r^2} \]

\[\text{attractively} \]

\[r^2 \]

\[G, \text{ newton's constant} \]

\[\approx 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2 \text{ kg}^{-2} \]

\[\text{very, very small} \]

"Actua at a distance"
1. Inverse square law

* #2/ elliptical, closed orbits

\[\frac{\mu V^2}{r} = \frac{\mu GM\omega}{r^2} \]

\[\omega = \frac{2\pi r}{T} \]

\[\left(\frac{2\pi r}{T} \right)^2 \frac{1}{r} = \frac{GM\omega}{r^2} \]

\[T^2 / r^3 = 4\pi^2 / (GM\omega) \]

* when universal law combined with Newton's laws of motion.

precession of perihelion unless force goes exactly as \(1/r^2 \).
#3 Shell Theorem

\[F = \frac{m \cdot M_{\text{shell}} G}{r^2} \]

shell of uniform mass density

force between spherically symmetric masses \(\propto \frac{1}{r^2} \)

distance between centers

#4 Ultimately, \(\frac{1}{r^2} \) law follows from dimensionality of space

\[\text{surface area of sphere} = 4\pi r^2 \]

Does space have tiny hidden dimensions?
IV. Kepler's 2nd Law

Do not depend on force of gravity, but rather follow generally from Newton's laws as

\[\frac{\Delta \text{Area}}{\text{cent} \text{time}} = \frac{\text{Angular momentum}}{2 \pi \text{planet}} \]

We will discuss angular momentum later, but it is a vector with magnitude for unopposed circular motion: \(r \cdot v \) makes riding a bicycle possible!
Example: in Jack Van's novel

- Space ship

To earth

Close to earth → To moon

"up"

What is wrong?
tides

Tidal force results from ΔF_e over surface of Earth!

\[
\begin{align*}
\vec{F}_e - \Delta F_e & \\
\vec{F}_e + \Delta F_e & \\
\end{align*}
\]

Tidal force = $F_{\text{surface}} - F_{\text{moon}} = \Delta F$

Giving 2 tides/day

First calculated by Newton 1687

\[
\begin{align*}
M_e, M_m & \text{ mass of earth, moon} \\
R_e & \text{ radius of earth} \\
R_{E.m} & \text{ earth-moon distance}
\end{align*}
\]

difference in high-low ocean height

\[
\Delta = \frac{3}{2} \frac{M_m}{M_e} \frac{R_e^4}{R_{E.m}^3} \sin^2(90^\circ - \text{latitude})
\]

= 0.56 @ equator

Also, weather, inclination of Earth's axis, solar tide