C = 3.00 \times 10^8 \text{ m/s in vacuum}

Distance equal to circumference of earth,

\[\text{Time} = \frac{40,000 \text{ km}}{3 \times 10^5 \text{ km/s}} = 0.13 \text{ s} \]

In material, light travels slower by factor

\[\frac{c}{v} = c/n \]

where \(n \) is index of refraction

<table>
<thead>
<tr>
<th>Medium</th>
<th>Index n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air (STP)</td>
<td>1.00029</td>
</tr>
<tr>
<td>Water (20°C)</td>
<td>1.33</td>
</tr>
<tr>
<td>Glass</td>
<td>1.52</td>
</tr>
<tr>
<td>Diamond</td>
<td>2.42</td>
</tr>
</tbody>
</table>
Ray optics

light travels in straight line (except for refraction, diffraction)

ex: reflection

For reflected ray, angle of incidence equals angle of reflection

Retraction at medium boundary

\[n_1, \quad n_2 > n_1 \]

Snell's Law: \[n_1 \sin \Theta_1 = n_2 \sin \Theta_2 \]
principle of minimum time

\[\frac{n_1 l_1}{c} + \frac{n_2 l_2}{c} = \frac{\text{minimum}}{AB} \]

Q: Total internal reflection

\[n_1 = \text{air} \]

\[n_2 \]

\[1.33 \sin \theta_c = 1.00 \sin (90^\circ) = 1 \]

\[\theta_c \text{ water} = \sin^{-1} \left(\frac{1}{1.33} \right) \approx 49^\circ \]

application - fiber optics
Thin lenses: concave lens.

- Central axis
- Image plane "in focus"
- Lens focal length
- Rays parallel to central axis are refracted through focal point
- Image is inverted on retina; brain compensates at pre-conscious level

Mirage:
- Warm air over cooler ground
- Portion of sky looks like water
polarization - light as transverse wave

I₀

randomly polarized light

Vertically polarized

Iₐ/2

polarized light

I = I₀ cos²θ

2nd polarizer

What is wave? (moving transverse function)?

Electric field
Diffraction

\[\text{interference fringes} \]

\[\text{shadow} \]

\[\text{dark} \]

\[\text{shadow of fine wire} \]

\[\text{two slit interference diffraction pattern} \]

\[\Delta(\text{path}) = s \sin \theta = s \theta \]

For \(\theta \ll \pi \), \(\sin \theta \approx \theta \)

Constructive: \(s \Theta_n = n \lambda \)

Destructive: \(s \Theta_n = (n + \frac{1}{2}) \lambda \)
3) Thin Films (Soap Bubbles)

\[n_1 \quad n_2 \quad n_3 \]

At air-medium interface, 90° phase shift \(\Rightarrow \) inv. polar

No phase shift at medium-air interface

For \(L \ll \lambda \), interference is dark.

For \(L \approx \lambda \), different color will have constructive interference