Lecture 10: Parton Model

Inelastic e-N scattering:

\[E'(1, \theta) \]

\[E(1, \theta) \]

\[\theta \]

\[\rightarrow z \]

hadron \((E_h, P_h) \)

Hadron mass \(m_h = \sqrt{E_h^2 - P_h^2} \)

Recall that for elastic scattering,

\[E' = E \left/ \left(1 + \frac{2E}{M \sin^2 \frac{\theta}{2}}\right)\right. \]

for inelastic scattering, \(E', \theta \) are independent variables.

\[\frac{d\sigma}{dE'd\Omega} = \frac{1}{4E^2} \frac{\cos^2 \frac{\theta}{2}}{\sin^4 \frac{\theta}{2}} \left(W_2 + 2 W_1 \tan^2 \frac{\theta}{2} \right) \]

where \(W_2, W_1 \) are form factors.

Or changing to variables, \(\nu = E - E' \) energy transfer:

\[Q^2 = -Q^2 = 4EE' \cos^2 \frac{\theta}{2} \]

\[\frac{d\sigma}{dQ^2 d\nu} = \frac{4\pi (\alpha \mu_0^2)}{Q^4} \left(\frac{E'}{E} \right) \cos \frac{\theta}{2} \left[W_2 + 2W_1 \tan^2 \frac{\theta}{2} \right] \]
where form factors are functions of \(Q^2 \),

\[
\text{Bjorken-Scaling}
\]

for \(Q^2 \geq \left(\frac{\hbar c}{0.1 \text{ fm}} \right)^2 = (2 \text{ GeV})^2 \)

\(W_2, W_1 \) depend only on dimensionless, invariant ratio ("Bjorken-\(x \")

\[
X = \frac{Q^2}{2 \mu M}
\]

\[
W_2^2 = \frac{Q^2}{2 \mu M}
\]

\[
W_1 \sim \frac{Q^2}{2 \mu M}
\]

Feynman's parton model

\[
\text{Wavelength of virtual photon } \lambda = \sqrt{\frac{\hbar c}{Q^2}}
\]

At large \(Q^2 \), strong force (QCD) couples i.e. weak at quarks are essentially free.
x is interpreted as momentum fraction of proton carried by quark. Inelastic scattering of proton is then described by elastic scattering of quarks.

\[\overline{k}' = \overline{e}'(1, \overline{r}') \]

\[\overline{F} = \overline{F}(1, \overline{r}') \]

\[f_i(x) \text{ probability for quark of flavor } i \text{ to have momentum fraction } x. \]

\[(x \overline{p} + \overline{q})^2 = m_i^2 \geq 0 \text{ neglect quark mass.} \]

\[\overline{q}^2 + 2 \cdot \overline{p} \cdot \overline{q} + x^2 \overline{p}^2 = 0 \]

\[x = \frac{Q^2}{2 \overline{p} \cdot \overline{q}} \text{ } \overline{\text{lab.}} = \frac{Q^2}{2M} \]
Compare elastic $e-\mu$ scattering to inelastic $e-p$:

$$\frac{d\sigma}{dQ^2} = \frac{4\pi}{Q^2} (\frac{E}{E'})^2 \cos^2 \frac{E}{2} \left[1 + \frac{Q^2}{2m^2} \frac{m_\mu^2}{m^2} \right]$$

When the limit with the identification of W_1^{in}, W_2^{in} are:

$$W_1^{\text{in}} = \frac{Q^2}{4m^2} \delta \left(\nu - \frac{Q^2}{2m} \right)$$

$$W_2^{\text{in}} = \delta \left(\nu - \frac{Q^2}{2m} \right)$$

where $\nu = \frac{Q^2}{2m}$ corresponds to $X = 1$

Note:

$$\delta \left(\nu - \frac{Q^2}{2m} \right) = \frac{\delta (E-E')}{E/E'}$$

where $E' = \frac{E}{1 + \frac{2E\mu m^2 \theta_1}{m}}$
Define covariant dimensionless variables

\[y = \frac{\overline{p}}{p} = \frac{1}{\sin^2 \theta/2} \text{ zero-momentum} \]

\[E - E' = \frac{y}{E} \text{ let from} \]

\[S = E_{2m}^2 = (E + m, E)^2 = 2mE \]

\[\mu \ll E \]

\[x = Q^2/2m\nu = Q^2/sy \]

\[\frac{dx}{dy} = \frac{4\pi (x + 2\nu)^2}{Q^4} \left\{ \frac{1}{2} \left[\frac{1}{1 + (1-y)^2} \right] - \frac{mxy}{2E} \right\} \]

Direct scattering e- by pointlike Q=1 Fermi with

momentum x\overline{p}^x \]

\[e - p \text{ scattering } \] define dimensionless structure functions \[F_1 = NW_1, F_2 = VW_2 \]

\[\frac{dx}{dy} = \frac{4\pi (x + 2\nu)^2}{Q^4} \left\{ \frac{1}{2} \left[\frac{1}{1 + (1-y)^2} \right] 2xF_1 \right\} \]

\[+ (1-y) \left(F_2 - 2xF_1 \right) - \frac{m}{2E} xy F_2 \right\} \]

Comparing, we see that for parton model

\[F_2 = 2x F_1 = \sum_i Q_i^2 x_i f_i(x) \]
\[
\frac{d\sigma}{dxdy} = \frac{4\pi (x+y)^2}{Q^2} \sum_x \left\{ \frac{1}{2} \left[1 + \frac{m^2}{2e} xy \right] - \frac{m}{2e} xy \right\} \frac{F_2}{x}
\]

\[
\frac{d\tau}{dxdy} = \frac{d\tau}{dy} \sum q_i^2 \delta_i(x)
\]

It was found that proton contains not only \(u,d\) "valence quarks," but also \(\bar{u}, \bar{d}\) pair "sea quarks."

\[\bar{u} \bar{u}\] pair from gluon exchange:

So \(F_0(x) \equiv U(x)\) contains valence and sea quarks.
proton structure function:

\[F_2^p(x) = \frac{4}{9} x \left[u(x) + \bar{u}(x) \right] \]

\[+ \frac{1}{3} x \left[d(x) + \bar{d}(x) + s(x) + \bar{s}(x) \right] \]

with sum rule:

\[\int_0^1 dx \ x \ (u + \bar{u} + d + \bar{d} + s + \bar{s}) = 1 \]

\[\int_0^1 dx \ [u - \bar{u}] = 2 \]

\[\int_0^1 dx \ [d - \bar{d}] = 1 \]

\[\int_0^1 dx \ [s - \bar{s}] = 0 \]

\[F_2^p(x) \] agree for e-\(p\), \(\mu\)-\(p\), \(\nu\)-\(p\) scattering. However:

\[\int_0^1 dx \ x \left[u + \bar{u} + d + \bar{d} + s + \bar{s} \right] \approx \frac{1}{2} \]

the rest is glue!
Electron scattering

Scattering of point (elementary, structureless) particles provides easy to interpret experiments.

Bhabha scattering: \(e^+ e^- \rightarrow e^+ e^- \)

\[
\frac{d\sigma}{d\Omega} = \frac{(k\pi)^2}{8E^2} \left[\frac{1 + \alpha^2 s^2}{\sin^2 \theta} + \frac{1}{2} (\cos^2 \theta + 2 \sin^2 \theta) \right]
\]

Ultra-relativistic limit:

\[
|A|^2 \propto \frac{s}{4E} \frac{1}{s^2 + m^2}
\]

\(E \) and \(e^- \) energy in \(Z \) frame

\(\chi^2 \): \(t = s^2 - 4E^2 \sin^2 \theta \)

\(S \): \(s = (E(1,2) + E(1,-2))^2 = 4E^2 \)

\(t, s \) are square of 4-momenta of virtual exchange photons \(t \) channel amplitude diverges as \(0^{-+} \) just like Rutherford.
\[e^+ e^- \rightarrow \mu^+ \mu^- \]

\[\frac{d\sigma}{d\Omega} = \frac{(\gamma + \kappa)^2}{4E^2} (1 + \kappa \cos \theta) \]

Can be understood in terms of angular momentum conservation.

\[S \rightarrow \rho^+ \quad \text{helicity} = +1, \quad \text{"right handed"} \]

\[\rho^- \rightarrow \bar{\rho} \quad \text{helicity} = -1, \quad \text{"left handed"} \]

At high energy (\(m = 0 \) limit) helicity is conserved by electromagnetic interaction.

Position-like electron mirror backwards in time.
Angular momentum conservation gives

\[A(LR \rightarrow LR) \propto \alpha_{1,1}^{t} (\theta) = \frac{1 + \cos \theta}{2} \]

3 outer amplitudes:

\[A(LR \rightarrow RL) \propto \alpha_{1,-1}^{t} (\theta) = \frac{1 - \cos \theta}{2} \]

\[A(RL \rightarrow RL) \propto \frac{1 + \cos \theta}{2} \]

\[A(RL \rightarrow LR) \propto \frac{1 - \cos \theta}{2} \]

All amplitudes are distinguishable, so squaring and summing gives

\[P(\theta) = \frac{1}{2} (1 + \cos \theta) \]

\[e^+e^- \rightarrow 2 \text{jet} \] angular distribution of jet axis has \(\frac{1 + \cos \theta}{2} \) distribution \(\Rightarrow \) quarks have spin \(\frac{1}{2} \).