Lecture 9: Spin

Electron has "intrinsic" spin.

Classical current loop for magnetic moment:

\[\mathbf{\mu} = I \mathbf{a} \]

Rewrite in terms of \(\mathbf{r} \):

\[L = m r^2 \omega \]
\[I = e \frac{V}{2 \pi r} = \frac{e \omega}{2 \pi} \]
\[a = \frac{A r^2}{2} \]

\[\mathbf{\mu} = \frac{e \omega}{2m} \mathbf{r} \]

For spinning sphere with uniform surface charge,

\[\mathbf{\mu} = \frac{e}{2m} \left(\frac{5}{3} \right) \mathbf{r} \]

\[J = \text{gyromagnetic ratio} \]

In magnetic field, torque is

\[\mathbf{N} = \frac{d\mathbf{L}}{dt} = \mathbf{\mu} \times \mathbf{B} = \frac{e}{2m} \mathbf{r} \times \mathbf{B} = \mathbf{L} \times \mathbf{B} \]

\(\mathbf{L} \) vector precesses about \(\mathbf{B} \) field direction with

\[\omega_L = \frac{e}{2m} \frac{\mathbf{r}}{B} \quad \text{Larmor frequency} \]
Potential energy of dipole:

\[V = -\vec{\mu} \cdot \vec{B} \]

In a non-uniform \(\vec{B} \) field, dipole will experience a force.

Take \(\vec{B} = B(z) \hat{z} \)

\[F_z = -\nabla V = -\mu_z \frac{dB}{dz} \]

Classically, \(\mu_z \) takes on continuous values, \(-\mu < \mu_z < \mu \)

Stern Gerlach experiment

Silver atoms have single \(e^- \) in outer shell:

Over \(\text{Collimated} \quad SG_{1/2} \)

Interpretation: \(S_z = \pm \frac{1}{2} \) quantized spin

2 beams!
We have a new (quantized) degree of freedom for the electron. We must modify the wave function as:

\[\psi_e = \Psi_{\text{space}}(r) \chi(\text{spin}) \]

\[\chi \text{ = spin state, does not depend on } r \text{ but can depend on } t. \]

Based on quantum rule for \(L \):

\[-m_L < L < +m_L \] (\(2L+1 \) states)

Two quantum states implies \(S = \frac{1}{2} \)

\[-m_S < S < m_S \] (\(2S+1 \) states)

\[m_S = \pm \frac{1}{2}, \quad S = \frac{1}{2} \]

Can be put on firmer theoretical ground from theory of symmetry (group theory) and properties of rotation, Lorentz groups.

All together, energy eigenstates are

\[\Phi_{n,L,m_L,\frac{1}{2},m_S} = \text{Rae } Y_L^m \chi_{m_S} \]
Aside: "Spin-$\frac{1}{2}$" Particles

Although we will never need this, it is neat to know that $\chi_{\pm \frac{1}{2}}$ can be represented as 2-component complex objects

$$\chi = \begin{pmatrix} a \\ b \end{pmatrix} ; \quad |a|^2 + |b|^2 = 1$$

$$\chi_{+ \frac{1}{2}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} ; \quad \chi_{- \frac{1}{2}} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

a, b are amplitudes to have spin component $\pm \hbar/2$.

Spin operators are 2x2 (complex) matrices.

When you add special relativity to Q.M., Dirac equation automatically gives e-intrinsic spin and predicts

$$g_e = 2(1 + g_s^2)$$

where $g_s^2 \approx 10^{-3}$ instead of $\frac{1}{10}$ precise.

elementary, point-like particle

$$\vec{p}_e = \frac{e}{2m} \vec{S} = \frac{e}{m} \vec{S}$$

$$\vec{p}_e \cdot \vec{B} = \pm \left(\frac{eB}{2m} \right) B_2$$

Bohr Magneton $= 5.78 \times 10^{-5} \text{eV/T}$
proton, neutron also have spin \(\frac{1}{2} \):

\[
\mu' = \left(\frac{g \hbar}{2m} \right) \left(\frac{e}{2m} \right)
\]

nuclear magneton \(3.15 \times 10^{-8} \text{ ev/}\tau \)

Because of mass, down by \(\sim 10^{-4} \)

\[
\frac{g \hbar}{2} = 2.793 \quad \frac{g \nu}{2} = -1.913
\]

p, n not elementary particles!

Relativistic correction to H-atom

Small: \(\langle v \rangle = \Delta c \)

Energy shift \(\Delta E \propto \Delta^2 E \)

But measurable!

Predicted by Dirac equation, collectively referred to as "Fine structure."
Free Structure

1. Relativistic Kinetic Energy
2. Spin-orbit
3. Darwin (electron field, Zitterbewegung), $h/mc = 2.43 \times 10^{-8} \text{nm}$.

Spin-orbit modified eigenstates

Physical picture: orbiting e-spin magnetic moment coupled to internal B induced by relative motion of proton (+ relativistic effect known as Thomas precession).

- L, S not separately conserved
- $J^z = L^z + S^z$ total angular momentum must be conserved

$\Delta E_{so} \propto \left\langle L^z S^z \right\rangle = \frac{1}{2} \left\langle J^z - L^z - S^z \right\rangle$

$= \frac{\hbar^2}{2} \left(2J(J+1) - l(l+1) - \frac{3}{4} \right)$

"Good" quantum number (conserved)
label eigenstates:

ν, j, m_j, l, s
my all fine same energy, so form (degenerate) multiplets \(n L j \) where in spectroscopic notation \(L = 0, 1, 2, 3, \ldots \)
\[= s, p, d, f, \ldots \]

Rule for determining \(j \): (group theory)
\[|l-s| < j < l+s \]

Example \(n = 2 \):

\(l=0, s=\frac{1}{2} \Rightarrow j = \frac{1}{2}, 2s+\frac{1}{2} \)
\(l=1, s=\frac{1}{2} \Rightarrow j = \frac{3}{2}, \frac{1}{2}, 2p+\frac{1}{2}, 2p_{\frac{1}{2}} \)

of states with same \(\ell \) spin

Original \(2(2\ell+1) = 6 \) degenerate states "broken" into \(\ell = 2j+1 \) multiplets

In general: \((2j+1) \times (2j' + 1) = \sum_{j=|j-j'|}^{j+j'} (2j+1) \)

Total fine structure:

Including all fine structure effects (Dive equa) \(2s_{\frac{1}{2}}, 2p_{\frac{1}{2}} \) are degenerate
Total Fine Structure:

\[\Delta E_{n'1} = -\alpha^2 E_n \left(3 - \frac{8n}{2j' + 1}\right) \]

\[n = 2 : \quad \frac{\alpha^2}{4} \frac{1}{2} \left(\frac{mc^2 \alpha^2}{\lambda} \right) \left(3 - \frac{16}{2j' + 1}\right) \]

\[= \frac{mc^2 \alpha^4}{2^7} \left(3 - \frac{16}{2j' + 1}\right) \]

\[= \frac{mc^2 \alpha^4}{2^7} \left[3 - 1\right] \]

\[\approx 1.13 \times 10^{-5} \text{ eV} \]

Splitting:

\[\Delta E_{fs} = 4 \frac{mc^2 \alpha^4}{2^7} = 4 \times 10^{-6} \text{ eV} \]

But \(2S_{1/2}, 2P_{1/2} \) are not degenerate, but are split by \underline{Lamb shift} \(1057 \text{ MHz} \)

A quantum field theoretic effect, accurately calculated in QED. (Includes vacuum polarization)

\[\Delta E (2S_{1/2} - 2P_{3/2}) = 1057.86(2) \text{ MHz} \]

\[\Delta E_{\text{exp}} = 1057.845(9) \text{ MHz} \]
Structure of Hydrogen

Fig. 4.2 Low-lying energy levels of atomic hydrogen. The diagram is not drawn to scale.

From Bjorken & Drell, Relativistic Quantum Mechanics

Not drawn to scale.
Atomic transition:

\[\text{Spontaneous emission} \quad \tau = 10^{-8} \text{ s} \quad (\text{"allowed"}) \]

also "supernova" \[\tau = 10^{-5} \text{ s}, \text{ "metastable" (2\gamma)} \quad \gamma = \frac{1}{25} \]

\[\begin{array}{c}
\downarrow \\
1S_\frac{1}{2} \\
2S_\frac{1}{2}
\end{array} \quad \rightarrow \quad \frac{\hbar c}{\lambda} = E_2 - E_1 = 10.2 \text{ eV} \]

\[\lambda = \frac{\hbar c}{10.2 \text{ eV}} = \frac{1240 \text{ eV nm}}{10.2 \text{ eV}} = 122 \text{ nm} \]

Energy eigenstates make transitions as a result of EM vacuum fluctuations.

Photon for spin 1. Allowed (electric dipole) selection rule

\[\Delta \ell = \pm 1 \quad \text{conservation of angular momentum} \]

\[\Delta J = \pm 1, 0 \quad \text{w/ spin–orbit coupling} \]

\[J = 0 \rightarrow J = 0 \quad \text{forbidden} \]
Zeeman Effect

See spectral lines from individual m_j by applying a weak external \vec{B}.

\[
\Delta E = -\mu \cdot \vec{B} = \frac{\alpha}{2m} (\vec{L} + \vec{S}) \cdot \vec{B}
\]

e.g. factor

Weak field $\Delta E \ll \Delta E_{fine}$ structure

Then l, s, m_l, m_s multiplets are a good description. Total J' precession about \vec{B}.

\[
\Delta E = \frac{e}{2m} \left[\frac{(\vec{L} + \vec{S}) \cdot \vec{J}'}{J'^2} \right] \left[\vec{J}' \cdot \vec{B} \right]
\]

\[
\vec{J}' \cdot \vec{B} = m_j' \cdot B
\]

\[
\Delta E = \mu_B m_j' B g_L
\]

when Lande-g factor is $3/2$

\[
g_L = 1 + \frac{1}{2} \frac{j(j+1) + s(s+1) - l(l+1)}{j(j+1)}
\]

*Note: I have used $(\vec{L} + \vec{S}) \cdot \vec{J} = (\vec{J} + \vec{S}) \cdot \vec{S} = J^2 + S^2$

\[
= J^2 + \frac{J^2 + S^2 - L^2}{2}
\]
Example:

2S1/2: \(g_L = 1 + \frac{\frac{1}{2}(\frac{3}{2}) + \frac{1}{2}(\frac{3}{2})}{2(\frac{1}{2})(\frac{3}{2})} = 2 \)

\(\Delta E = g_L m_j \mu_B B = 2(\frac{1}{2}) \mu_B B = \pm 5.79 \times 10^{-5} \text{eV/} \mu \text{B} \)

so for \(B \sim 1 \text{ Tesla} \), \(\Delta E \sim \Delta E(\text{fine structure}) \)

"Weak field" \(B \ll 0.1 \text{ Tesla} \)

2P3/2: \(g_L = 1 + \frac{\frac{3}{2}(\frac{5}{2}) + \frac{1}{2}(\frac{3}{2}) - 1(\frac{1}{2})}{2(\frac{3}{2})(\frac{5}{2})} = \frac{2}{3} \)

2P1/2: \(g_L = 1 + \frac{\frac{1}{2}(\frac{3}{2}) + \frac{1}{2}(\frac{3}{2}) - 1(\frac{1}{2})}{2(\frac{1}{2})(\frac{3}{2})} = \frac{4}{3} \)

Strong field: \(B \gg 1 \text{ Tesla} \)

Ignore fine structure splitting:

\(\Delta E = (m_e + 2m_s) \mu_B B \)